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APPLICATION OF PATTERN RECOGNITION TECHNIOUES TO DETECTION OF SEVERE STORM

FEATURES FROM METEOROLOGICAL SATELLITE DATA

0. Introduction

The availability of high-resolution satellite imagery from SMS/GOES offers
a unique opportunity to monitor severe weather phenomena on the mesoscale. The
objectives of this report are to summarize features of various categories of
severe storms and examine the applicability of pattern recognition techniques
to the identification and prediction of severe storms from visible and infra-
red satellite imagery.

Pattern recognition models for severe weather phenomena differ from classi-
cal, statistical pattern recognition models in terms of feature values, stages
of decision logic, branching logic, and feedback capability. Feature values
are often discrete (representing the presence or absence of one or more events
associated with severe weather) rather than continuous. The decision logic
proceeds through various stages, often backing up or modifying previous deci-
sions, until a final classification (such as number of inches of rainfall or
cyclone intensity) is made.

The degree of automation which can be introduced into these pattern recog-
nition systems can vary from total automation to a completely manual approach.
The cost of development and/or application of automatic pattern techniques
must be considered on an individual basis for each type of fcature to be ex-
tracted. In general, those features which must be obtained by automatically

> tracking a sequence of cloud objects are more exncnsive than those which can
be obtained from a single image.

: This investigation began with a literature survey, a questionnaire, on-
site visits to NASA and NESS and intervicws with meteorologists expert in vari-

ous aspects of severe storm identification and prediction. Section 1 reviews
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the pattern recoanition moc:is retevant to severe storm identification and pre-
diction. Section 2 summarizes for various categories of severe weather those
features which characterize each category. The digitized data necessary to
extract each feature is considered.

For a completely automatic system for severe weather pattern recognition
models, alcorithms for (1) cloud classification, (2) cloud segmentation, (3)
cloud geometry, and (4) cloud tracking need to be developed. A review of al-
gorithms in these four different areas and suggestions for future algorithmic
development are presented in Section 3.

The concluding section outlines our recommendations on the feasibility

and priority of development of some pattern recognition techniques for iden-

tification of severe weather features.




1. Pattern Recognition Models

One can consider a number of different paradigms for pattern recognition.
A description of the major models serving to direct research on machine pat-
terns appears in Kanal [1974]. The two main approaches are termed (a) the
Feature Extraction-Classification model, and (b) the Tinguistic or syntactic

model.

Feature Extraction Classification Model

In the feature extraction classification model, recognition is achieved
by making measurements on the patterns to be recognized, and then deriving
features from these measurements. These features form the input to a classi-
fication procedure that gives a class, group or category assignment for each
pattern. The available information from the pattern environment is thereby
reduced, in stages, ultimately to a small number of categories.

A commonly used version of the feature-extraction classification model
is one in which the ‘features are treated as components of a vector X =
(x15X9,...,%p). Each pattern is considered to be a noint in the resulting
n-dimensional feature space. Classification is then treated as a problem of
dividing this n-dimensional space into exclusive regions Rj, j = 1,2...k,

such that when a feature vector falls into R., the pattern is assigned to

i
class j. This division might be effected on the basis of statistical or non-
statistical cornsiderations. Note that any type of feature may be used in
this model.

In the simplest case where there is no variability within pattern classes,
classification reduces to template matching in which an observed pattern is

matched against a prototype (template). When the variability is limited, it

may be possible to extend this idea to the feature space and classify patterns




according to their distance from the nearest prototype. In most problems one
needs to employ more sophisticated methods of multivariate statistical clas-

sification for defining the regions Rj.

The commonly used version of the feature-extraction classification model
has been criticized for focusing primarily on statistical relationships among
the features while ignoring other "structural" properties that seem to char-
acterize patterns. Also the classification into a region Rj of n-dimensional
space leads only to a class designation of a pattern rather than a description
which provides some insight concerning the class, or which allows one to gen-
erate patterns belonging to a class.

Various approaches are being taken to overcome the above perceived fail-
ings of the feature-extraction classification model. In the linguistic model
for pattern description, patterns are viewed as sentences in a language de-
fined by a formal grammar. A "primitive extractor" transforms the input data
into a string of symbols or some general relational structure. The primitive
extractor may itself be a feature extractor classifier. Then a structural
pettern analyzer uses a fermal grammar to parse the string and thus constructs
a description of the pattern.

The stress on the distinction between the feature-extraction classifi-
cation model and the linguistic-syntactic model misses the obvious points
that, even in the syntactic model, the primitives are features that have to
be extracted from measurements, and that associating a pattern with a genera-
tive model is esscntially equivalent to classifying the pattern into categories
represented by the generative models. Clearly, the generative models need

not be restricted to formal grammars. One could include such familiar models




as a differential equation model, a functional equation model, or a stochas-

tic model such as a finite state Markov chain model.

Structural Pattern Recognition

When a formal model is not explicitly present, the terms "ad-hoc" or
"heuristic" are used. The phrase "structural pattern recognition" refers
to all pattern recognition approaches based on defining primitives and iden-
tifying allowable structures in terms of relationships among primitives, and
substructures that combine primitives. The relations might be boolean expres-
sions or might be specifiable by some statistical relationships or ty a gen-
erative grammar model. The term structural pattern recognition represents
less a specific set of procedures than an attitude, i.e., that pattern recog-
nition algorithms should be based on the mechanisms that generate and deform

patterns.

Hierarchical Classifiers

Hierarchical classifiers or decision trees have been used extensively
in many application areas of multiclass pattern recognition. A hierarchy
of classifiers provides a flexible way to incorporate different feature sub-
sets, statistical, linguistic, or ad-hoc relationships, and decision poiicies
at the various nodes of the tree.

A1l the problems of feature selection and classifier design are accentu-
ated in the multiclass multimodal case,and the usual single stage multivariate
linear or nonlinear discriminant function approach often fares more poorly
than anticipated.

The apparent theoretical increase in discriminating ability of single

stage nonlinear discriminant functions is usually not realizable in practice

because of problems involved in estimating the Tine structure, represented




by the higher-order relationships amonq the features, due to dimensionality
and sample size considerations [See Kanal 1974].

In an M class problem, for a given sample size per class, dimensionality-
sample size considerations may dictate that no more than n features be used.
It is likely that the best set of n features to discriminante between one
group of classes is quite different from the best n features for another set
of classes. Limiting consideration to some n features to be used in a single
step to make an M-way decision may lead to a forced compromise in the choice
of the feature set. Splitting the decision into several stages might be
better. Then at each stage of the decision process, the n features best
suited for that classification task could be used. This permits the multi-
class classification problem to be decomposed into a series of less complex
decision problems. The optimal and heuristic design of decision trees which
use both physical model-based features and data derived features is the sub-
ject of current research by Dr. Laveen Kanal and his students at the Labora-
tory for Pattern Analysis of the University of Maryland [e.g. Kulkarni 1976,
Kulkarni and Kanal 1976].

In practice, the optimal techniques for designing decision trees are not
feasible,and the various suboptimal techniques for tree design are best viewed
as subroutines to be utilized in a recursive, interactive approach to the
design of hierarchical classifiers. Reasons for taking an automated, inter-
active, graphics-oriented approach to pattern analysis and the design of
classification systems were summarized in Kanal [1972], which also described
a number of representative interactive pattern analysis and classification
systems (IPACS) then impiemented or under development.

MIPACS, the Maryland Interactive Pattern Analysis and Classification

System which is partially implemented, was designed to facilitate the inter-




active design of single stage and hierarchical classifiers [Stockman and

Kulkarni (1976), Kanal (1977)]. MIPACS has been found very useful by Ms.
Jo Ann Parikh in interactively designing and testing decision trees for
her dissertation on cloud classification and seqmentation [Parikh (1977a,
1977b) 1.

We note here that (in unpublished work) Scofiel” has developed a decision
tree for thunderstorms to aid human decision making (See Fig.1), and D,
Tarpley of NESS has developed a decision tree for recognition of low clouds.

For severe storm identification and recognition, it is clear that the
classification model which will have to be relied upon s the hierarchical
classifier or decision tree with statistical and other structural features
and relationships being used at the various nodes. The design and test-
ing of the classifiers for some of the severe storm features will have to
be "experimented within an interactive manner, before defining an opera-
tional procedure to be recommended for use in any automatic or semi-automa.ic
system.

Some of the general problems of pattern recognition, which affect the
development of pattern recognition schemes for a variety of application areas,
were listed in Kanal [1975]. Some of these problems impinge upon the develop-
ment of automatic and semi-automatic systems for severe storm feature extrac-
tion and classification. Additional preblems arise in the severe stomm
area from the fact that some of the important features which are used or
may be potentially used to identify severe storm activity are not defined in
a static manner. Rather many features are defined by the nature of their

evoiution in time, with the time involved ranging from a fraction of an hour

to days. Procedures for the automatic extraction of such time dependent




features, many of which are described in subsequent sections, are essentially
lacking in the published literature on digital picture processing [Rosenfeld
and Kak (1976)]. It does seem feasible to develop automatic procedures for
some of the more important time dependent features, and these are taken up

in Section 3.4 and in the recommendations. Many of the available procedures
for curve detection, line detection, description of pattern geometry, and
pattern segmentation, some of which are discussed in Section 3, need to be
examined in a comparative study for their relevance to severe storm feature
detection. The state of the art of image pattern recognition is unfortunately
not so advanced that one can decide without experimentation on real data

which procedure is best for a given application.
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2. Description of Scvere Veather Features.

A compilation of severc weather features by severe storm category was
prepared from information obtained from a review of the literature, consul-
tations with satellite metcorologists, and responses from a questionnaire.
The format of the questionnaire is presented in the appendix. The responses
received are reflected in the text of this report.

Four categories of severe storms were of major interest to the satellite
meteorologists:

1) Severe windstorm

2) Heavy rainstorm

3) Hailstorm

4) Tornado
Two other categories of severe storms--blizzards and electrical storms
(1ightning)--will not be considered in this study. B8lizzards tend to be
characterized by larger scale features than the mesoscale features which
have been used to identify and/or predict severe windstorms, etc. Further
research is needed before definitive correlations between specific satellite
features and the occurence of scvere electrical storms can be made. Many
of the features which are relevant to the severe storm categories above
will probably prove to be of importance in the case of electrical storms.

A list of severe weather features resulting from merging the responses
to the questionnaire on this topic is given in Table 1. An attempt was made
to place the most important features for cach storm category near the top
of the list.

Most of the features can be detected from observations of a sequence of

infrared or cnhenced infrared images. Included among thesc features are




splitting cells, merging cells, speed-of-cell movement, vertical growth
rate of cells, change in top heights and life cycles of overshooting tops.
Wind fields which can be automatically extracted from visible or infrared se-
cuences by cloud tracking algorithms can be used to determine low-level vor-
ticity, patterns of upper-level divergence combined with low=level conver-
gence, whether a storm is deviating to the right or left of the mean wind,
and upper-level jets in the vicinity of storms. Specific cloud types or
configurations associated with these features also can be used to identify
their presence in a single image. HMesohigh boundary interactions, pendant-
shaped cells, low-level cumulus cloud line feeder bands, the texture of a
ce]]; and the location of the steepest temperature gradient are severe weather
features which can be observed in a single image. Overshooting tops are, in
generq], too small to be observed in the infrared images where the resolu-
tion is 4 nautical miles (n.m.) but can be detected in the visible images
where the resolution is 1/2 n.m. or 1 n.m.

A brief description of each of the features in Table 1 is included in
this section. Algorithms to extract each feature are considered
in Section 3. Section 3 provides insight into the na-
ture of the problems which must be solved if a completely automatic system

)

be developed.

2.1. Mesohigh Boundary Interaction

The intersection or merger of the outer boundary of a mesoscale hign
pressure system with another convective boundary (such as a front, squall
line, or another mesohigh) was shown by Purdom [74,76a] to almost always re-
sult in an increase in convective activity. Rain, a decrcase in tempera-

ture, a pressure surge, gust fronts, and tornado activity may occur at

10




S| |32 padeys-3juepusd ‘g

SL132 ButiaLlds ¢

o9ouabuanruod
L9A3]- MO| pue 3JUd
-543ALP |3A3d|-4addn 9
L{sv 4¢
93ed y3Moub |eoLiu3y °g

£310L340A
18A9|-10| BALILSOd °P

sdo3 Euilooysaanp “g

Bui3etasp

SUOL3oRUd
»;mnc:on:mwco

L

U
8l

opeuao}

SWA0}S 94A3G O UOLIRZLADIORARY) J0) SIUNIBI4 93 L||33es 102150040333y "L 91QEL

Swa035 bBurjeLAdp
3431 40 3ybLy °g

sL1e2 bulzrids “p
L1992 j0 33ed
yzMoual [estjaap ¢

saybtay doy 2

sdo} SuL3ooysS4aAQ |

wacjspLe

spueq
43padj) duL[-pno|d
SN NWND [3A3[-MOT "/

sdo} butjooysasaQ "9

paanixaj 3ybirag °g
9oe|d awes 43A0
puLAow SwW.03S bLq 40
Swd03s DULAQY MOLS “f
s8> buibusy "¢

1132 jo
9304 y3moab [LILJUd4 "2

qualpeudb
aJanjedsdway 3sadsans |

waojsurey Aae

Aa0003R) WA0FS 949438

w403s 30 Azl
-utota ut 33l [aAaa-43cdin

L1ed 40 3704
y3toub |edLqusp

sdo3} But3ooysusa)

>
~
[
el
s
=]
O
o o

o

O
Q s
40 e
%)

JUSWSACY | |9D-10-poads

WACISPUL;; 94BASS

Wl

9

i

!

g
<
-
R




these points of convective intersection. There are two basic cloud pat-

terns described by Gurka [76] which are associated with mesohighs. In the
first case, the outer boundary of the mesohigh appears "as an oval shaped

leading edge to the thunderstorm with the anvil cirrus curving anticycloni-

cally out of the rear of the (thunderstorm) cluster". In the second case,
the outer boundary appears as "an arc shaped line of convective clouds ad-
vancing cutward from a dissipating thunderstorm area". The parent cumulonim-
bus cell may exhibit a "comma" tail.

The comma-shaped cloud pattern, which is associated with areas of upper
tropospheric. vorticity, is often indicative of severe weather. Mathews and
Johnston 76] reported the occurrence of tornado activity, gust storms in
excess of 50 knots, and hail in the area of a compact, well-organized comma
cloud system. They attributed the severity of the thunderstorm outbreak to the
relationship between well-defined comma cloud systems and concentrations of
positive vorticity advection (strong upward vertical motion). Parmenter [76] .
described a rain/snow producing sub-synoptic system in which the cloudiness

associated with a surface wave had a distinct comna shape with colder tops

o}]

along the northern side. L
In order to determine or differentiate areas of severe weather along
the mesohigh boundary, Gurka [76] recommended in the case of qust fronts use
of ennenced infrared and visible imagery to locate features such as tempera-
ture cf the coldest tops in the thunderstorm cluster behind the mesohigh
boundary, the presence of overshooting tops, cloud edge gradients, and speed

of motion o7 the arc bounding the mesohigh. The role of intersecting arc

Tines (mesohigh boundary interactions) was also emphasized.

12
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2.2. Low=Level Cumulus Cloud Line Feeder Rands

Low-level cumulus cloud Tine feeder bands refer to the mesoscale Tines
of small cumulus clouds which move or feed into a thunderstorm system, main-

taining and replenishing the moisture of the thunderstorm system. These

cloud lines represent areas of low-level moisture convergence. When these

convective lines intersect or merge into another convective boundary or line,

enhanced thunderstorm activity almost always results. An example of this
type of merger appeared in Purdom [74]. The location of new thunderstormns
along the cloud line of an old mesohich boundary was shown to coincide with
the point where low-level cumulus lines merged into it from the south.

The recognition of convective lines in satellite imagery plays a major
role in the prediction of thunderstorm activity. Oliver and Purdom [74]
stated that "almost all new large convective activity in the tropics forms on
a pre-existing line". They differentiated various types of line patterns
in satellite imagery including synoptic frontal bands. squall lines, rope-
Tike clouds, and mesoscale Tines of small cumulus clouds. Convective lines
representing areas of low-level moisture convergence may be terrain rclated.
However, Purdom [74] noted: "Regardless of the generation mechanism for a
convective boundary or line, when it merges with and intersects another con-
vective boundary or line, more intensc convective activity almost always re-

sults."

2.3. Steepest Temperature Gradient

The Tocation of a gust front along the leading edge of a cumulonimbus
system and the area of most significant precipitation in a convective systen
can be determined by analysis of the temperature gradients within the thun-

derstorm systems. Gurka [7€] noted that "the gust front is usually located

13




very close to the strongest temperature gradient in the infrared pictures,
near the lecading edge of the cumulonimbus". Oliver and Scofield [76] ob-
served that the arca of most significant precipitation (which may consist

of only one-tenth or less of the entire anvil area) in a convective system
occurred in the upwind portion of the system. The upwind portion of the con-
vective system can be determined in a single enhanced infrared image from the
shape of the individual anvils and the location of the steepest temperature
gradient. Anvil cirrus has a distinct sharp edge on the upwind side and a
fuzzy edge downwind. The plumes often extend downwind several degrees.

The location of the largest temperature gradients in images formed by sum-
ming digital values for enhanced infrared images over a 6-hour period can
also be used to determine the upwind portion of the convective system. A
high degree of correlation (correlation factor of 0.88) was obtained by Oliver
and Scofield [76] between observed 6-hour precipitation and cumulative digi-
tal infrared values in the upwind partion of the convective system.

Enhanced infrared imagery is used to "better display low clouds, to
better identify the structure of convective storms and to locate sea-surface
temperature gradients" (Anderson[74]). Enhanced infrared images are ob-
tained by transforming the gray-scale of infrared images by application of
specific enhancement curves. Display devices for infrared imagery are, in
general, limited from 16 gray shades (or less for facsimile recorders) to 64
gray shades. If infrared imagery is not enhanced, temperature increments are
equal for each shade of gray in the display. In order to enhance the data,
the range of possible temperature values is partitioned into temperature in-
tervals or segments and for each scgment a linear mapping from the tempera-

ture values within the segment to a specific gray scale range is specified.

14
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If no enhancemant is desired for the segment, the linear function consists

of a straight line with slope factor 1. The enhancement curve may assign
gray shades out of sequence instead of varying gray shades from black to
white as the temperature decreases. This type of enhancement (alternating
light and dark shades) is particularly effective for identifying the struc-
ture of convective storms. The enhanced infrared pictures used by Gurka [74]
were produced by assigning gray shade values to temperature intervals as

specified below:

+30°C to -44°C -- linear assignment from black to near white
-45°C to -57°C -- dark gray

-58°C to -63°C -- light gray

colder than.-63°C -- black

The following enhancement procedure was used by Oliver and Scofield [76] for

summer convection in the middle latitudes:

+17¢ to =2°C -- dark gray
<3° a-23°C -- light gray
-24°C to -43°C -- white
-44°C to -58°C -- dark gray
-59°C to -63°C -- light gray
-64°C to -68°C -- blackest
below -68°C -- whitest

A compariscn of three enhancement curves for GOES-1 infrared imagery avail-
able in the Washington Satellite Field Services Station on February 1976 can
be found in Clark [6].

The location of the steepest temperature gradient in enhanced infrared
imagery is determined by observing a narrowing of the width or distance be-
tween aray shade contours. According to Scofield [76], "There are situations
when the upwind portion (area of tight IR temperature qradient) and active
thunderstorm clusters are difficult to find because: (1) the tight IR temp-
erature gradients cannot be discerned, or (2) the colder enhanced IR contours

overspread a large area." There is clearly a need to incorporate pattern re-

15




cognition techniques for analysis of infrared gradients into a system for
producing enhanced infrared imagery. The need to develop pattern recogni-
tion techniques that enhance and identify the surface thermal gradients was

discussed by Miller et al. [75] under the heading of "Severe Storm Potential

Analysis". They recommended use of thermal gradient maps to quantify phen-
omena such as the motion of arc clouds and to delineate "the relative hot
and cold ‘tonques' that seem to be necessary conditions for certain kinds

of severe weather generation".

2.4. Top Heights

"The highest and coldest clouds form where the thunderstorms are most vig-
orous" (0liver & Scofield [76]). Near the convective cells with the coldest tops
the strongest winds, the heaviest rain, and the most severe thunderstorm
activity occur. An outbreak of severe weather in the Midwest which pro-
duced 4 tornadoes, 14 occurrences of gusts in excess of 50 knots, wind damage,
and hail up to golf ball size was found by Mathews and Johnston 76] to be
associated with a comma cloud pattern in which cloud tops up to 46,000 ft.
were indicated by radar.

The height of cloud tops can be obtained from the cloud-top temperatures
and a vertical temperature profile of the area of interest. Procedures to
determine cloud-top temperatures from satellite radiance measurements gen-
erally make two basic assumptions: (1) clouds are opaque and hence their
emissivitics are equal to unity, and (2) a constant correction factor may be
applied for water vapor contributions above the cloud. Liou [75 ] noted
that both assumptions seem justified for cumulonimbus clouds which are fairly
high in the atmosphere but added that "it seems unlikely that a cloud whose

emissivity cquals unity may be isolated from satellite observations", and
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that "unless a reliable radiative transfer calculation can be carried out,

the uncertainties of the emissivity of thick clouds or multilayered clouds
may lead to serious errors in the evaluation of cloud-top temperatures." If

the field of view of the satellite sensor is not completely filled by clouds

which are sufficiently dense to shield the satellite sensor from radiation
below the cloud, the radiance at the satellite will represent the sum of
radiance from the cloud and radiance from surfaces beneath the cloud. If
other types of clouds are also in the field of view, for example, layer-type
clouds such as cirrostratus and altostratus, the assumption of an emissivity
of 1.0 may not be valid. Discussions of relationships between cloud-top
temperatures, brightness, and heights can be found in Mosher [76], Shenk

and Curran [73], Park et al. [74], Gruber [75], Liou [75], and Young [75].

The cloud height program of Mosher [76] determines the height of wind tracer
clouds by using visible brightness, solar zenith angle, satellite zenith
angle, relative azimuth angle, cloud type (ice or water clouds), etc., to
calculate cloud emissivity as a function of the optical thickness of a cloud.
Further investigation is needed to determine whether or not within a thunder-
storm system areas of coldest satellite radiance measurements can be equated
with areas of coldest cloud tops (i.e.,if the assumption of cloud emissivity
equal to unity suffices) or if more complicated algorithms, such as the cloud

height algorithm of Mosher [76], need to be implemented.

2.5. Vertical Growth Rate of Cell

The vertical growth rate of a cell is determined from enhanced infrared
imagery by observing the change of satellite radiance measurement with time.
Assuming that the changes in radiance measurcments parallel changes in tem-

perature and that temperature decreascs with heiaht, then the expansion of a
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gray shade contour representing the coldest radiance measurements denotes

a vertical growth of the cell. The rate of growth is represented by the
change in arca of this contour over the time period of interest. This change
will be a function of the particular enhancement curve used to produce the
enhanced imagery.

The amount of expansion (mecasured in terms of degrees of Jatitude) of
cloud tops in the upwind portion of a convective system was one of the fac-
tors in Scofield's decision tree procecure (Fig. 1) which contributed toward an
increase in the amount of convective rainfall. Larger amounts of precipi-
tation were associated with colder tops and with rapidly expanding tops.

Winds of 50 knots were reported in the area of a cloud pattern typical of

¢

air mass thunderstorms when the parent cumulonimbus cell was rapidly grow-

ing and producing heavy rainfall (Gurka [74]).

2.6. Overshooting Tops

Overshooting tops refer to thunderstorm tops which "shoot over" or
above th2 anvil portion of the thunderstorm. The upper 1im$t of thunderstorm
arowth is determined by the height of the stratosphere. The tropopause,
the base of the stratosphere, is defined as "the level at which temperature
begins to increase with height or at least decreases at a rate below 1.1°F.
per 1000 ft. (Battan [61]). When the cloud air moves into the stratosphere,
it will be subjected to a downward force since the ascending air is colder
and hence more dense than the surrounding air. The updraft speeds in the
thunderstorm, however, may be so high that the upward momentum will propel
the cloud air several thousand feet above the tropopeause until the downward

force brings it to a halt.
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Overshooting tops can be recognized from both visible and infrared §
imagery. The presence of overshooting tops in infrared imagery can be as-
certained by determining if the cloud-top temperature is higher than the
temperature of the tropospause at the given location. Miller et al [75]
suggested that overshooting tops may be "delineated by simple aradient or
curvature enhancement techniques". A second indication of overshooting
tops is the appearance of an uneven or lumpy texture within the thunderstorm
system. Individual overshooting tops are usually too small to be seen in
infrared imagery (4-mile resolution). If visible imagery (1/2- or 1-
mile resoluticn) is available, overshooting tops can be detected by the shad-
ow they cast upon the anvil.

Overshooting tops are associated with the most hazardous parts of thun-
derstorms. If a cloud is capable of producing large hailstones, it must

have very strong updrafts. These updrafts would furnish the upward momen-

tum to produce cvershooting tops. According to Battan [61], if a hailstone
is to reach a diameter of 3 inches, it must take several tripns to the top

of a tall thunderstorm and down again. Since a 3-inch hailstone has a fall
speed of about 6000 feet per minute, vertical motions of this magnitude must
exist within the cloud. When analyzing cloud patterns associated with strong
wind zones, Gurka [74 ] stated that "on visible imagery, the strongest cells
can sometimes be located by overshooting tops above the anvil." Scofield's
decision tree procedure (Fiqg.1) for half hourly estimation of convective rain-
fall increases the half hourly estimated amount of precipitation by 0.50

inch if overshooting tops (located on visible imagery) occurred in the up-
wind portion of a thundersteorm system. For an example of visible imagery

showing a line of overshocting tops in a thunderstorm cluster, see Scofield
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2.7. Bright Textured

Thunderstorm clouds which produce the heaviest precipitation appear
bright and textured in the visible imagery. DBright, smooth clouds are of-
ten representative of middle and high cloud debris without precipitation
(Seefield [76]). Darker clouds and translucent clouds also are not generally
indicative of heavy amounts of falling precipitation. In addition to a
bright-textured appearance, features which can be extracted from visible
imagery for characterization of heavy rainstorms include overshooting tops,
merging thunderstorms (also can be ohserved in enhanced infrared), and low-

level cumulus cloud-line feeder bands.

2.8. Upper-level Jet in Vicinity of Storm

A jet stream is defined by the Morld Meteorological Organization (4M0)

as "a strong narrow current, concentrated along a quasi-horizontal axis in

the upper troposphere or in the stratosphere, characterized by strong verti- ,
cal and lateral wind shears and featuring onc or more velocity maxima".

There are two main westerly jet streams at upper troposphere level: (1)

the subtropical jet stream which is found between 30,000 and 40,000 feet
above sca level between 30° and 35° latitude and (2) the circumpolar or polar
jet stream located somewhat lower in the atmosphere and further away from

the equator than the subtropical jet stream. According to the definition
adopted by the World Mcteorological Organization: "Normally a jet stream is
thousands of kilometers in length, hundreds of kilometers in width and some
kilometers in depth. The vertical shear of wind is of the order of 5 to 10
mps (1 meter per sccond = 2 knots) per kilometer, and the lateral shear is of
the order of 5 mps per 100 km. An arbitrary lower 1imit of 30 mps is as-

signed to the speed of the wind along the axis of a jet stream". A jet
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axis is the axis of strongest winds within a jet stream. Jet maxima (velo-
city maxima) are centers of high wind speed alonq the jet streams. Winds
may reach more than 250 knots along a jet strcam axis.

Location of a jet axis can be determined from satellite derived upper-
level wind data or from examination of cloud patterns in the vicinity of
the jet stream. Auvine and Sikda: [73] observed that "the jet axis closely
follows the zero vorticity line with anticyclonic vorticity to the southeast
and cyclonic to the northwest", which "was in accord with the theorctical
expectation for a westerly jet stream”. They used Mancuso and Endlich's [73]

Wind Editing and Analysis Program to obtain a computer analysis of the diverqg-

ence and relative vorticity fields. "The main jet-stream cloud features are
long shadow lines, large cirrus shields with sharp boundaries, long cirrus
bands, cirrus streaks, and transverse bands within cirrus cloud formations"
(Anderson [74]). In order to locate on visible imagery the polar jet (which
breeds blizzards and stormy weather over the United States), one should look
for the sharp poleward edge of a large, slightly anticyclonically-curved
cirrus shield. The shadow cast by the high jet-strecam cirrus clouds on
lower clouds or surface features usually extends far from the edge of the

cloud. "Poleward from the jet streams the clouds nresent a 'lumpy' appear-
ance, while on the equatorward side the clouds look much more even" (Ander-
son [74]). Relationships between synoptic features (such as jet streams)

and representative cloud patterns, although generally valid, do not always
apply in each specific instance. For example, Doswell and Scheeffer [76] re-
ported a finding on May 4, 1975, in which the position of cirriform bands and

streaks was well south of the jet core which was "at variance with the litera-

ture on satellite interpretation."
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Middle and upper-level jets are often associated with outbreaks of

severe weather. Anderson [74] pointed out that "an important factor in
forecasting severc weather is the presence of a mechanism that produces upper-
level divergence," and "in most cases this is a jet stream." Tornado
outbreaks have occurred near the intersection of a low-level and upper-

level jet (Miller [71]) and near the intersection of a dry line and a jet
stream (Miller [76]). According to Anderson [ 74], "tornadoes occurring in
the presence of the subtropical jet stream are normally beneath its inter-
section with the squall line and to the north of the jet axis." Scofield

5] traced a heavy snowstorm to an upper air disturbance in the vicinity

of a 300-mb jet axis. Auvine and Sikdar [ 73] located the jet core to the
west of storm regions which procuced severe weather including tornadoes and
located the jet axis to the northwest of the precipitation area. In the
cases they studied, they found similar fluctuations between cirrus tracer
motions near the jet stream and nearby severe storm intensity which suggested
some sort of direct interactions of the severe storm evolutions with the

jet-stream flow field."

2.9. Pendant-Shaped Cells

Pendant-shaped cells or "carrot" cells refer to thunderstorm cells which
develop in a strong,vertical shear environment. These thunderstorm cells,
which are shaped by the veer of wind with height, are stretched out horizon-
tally so that the clongated axis of the anvil is parallel to the vertical
wind shear between the lower and upper troposphere. The vertical wind shear
vector is parallel to the mid-tropospheric isotherms. Pendant-shaped cells
often occur in close proximity to jet streams; typically, in the vicinity of
2 low-level southerly jet and a high-level westerly jet. The wind shift

from southcast to south to southwest with height produces the characteristic
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pendant shape of the cells.

Anderson [74] pointed out that "veering of winds with height is an im-
portant parameter in forecasting severe weather." NOAA-1 infrared imagery,
depicting pendant-shaped cells in an arca in which tornadoes occurred be-
neath the intersection of low- and/mid-level jets, can be found in Figure 5-
E-3 of Anderson [74]. Although pendant-shaped cells are generally associated
with thunderstorms, their significance in determining the severity of a
thunderstormn is questionable. Further statistical analysis is needed to
evaluate the importance of including pendant-shaped cells as a feature in

severe storm pattern recognition models.

2.10. Right (or Left) Deviating Storms

Right (or left) deviating storms are thunderstorm cells which move to
the right (or left) of the mean tropospheric wind. Right moving (right
deviating) storms often occur after a thunderstorm cell splits into two sep-
arate sections, with one section (left deviating) moving to the left of the
mean wind and one section (right deviating) to the right. The right
deviating, cyclonically rotating cell is associated with severe thunderstorms,
"One of the characteristics of a convective system is for thunderstorm gen-
eration to take placc on the upwind side and to propagate to the right of
the mean tropospheric wind" (Scofield [76]).

The movement or deviation of a storm from the mean wind can be observed
from sequences of enhanced infrared imagery. The coldest temperatures of
the right deviating thunderstorm move to the right of the mean motion. The
mean wind or wind direction can be determined by tracking appropriate cloud
targets for wind velocity estimation. If the change in wind direction with

height is minimal, the wind direction will be parallel to and can be esti-
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mated from the orientation of the cirrus blowoff (cirrus plumes). However,
this procedure should not be used in an environment of strong vertical wind
shear.

In an analysis of an outbreak of severe weather over the midwestern
United States on May 5, 1971, Anderson [74] pointed out that "the threat
tracks of the tornado nroducing storms are all oriented at a far greater
angle to the right of the low-level flow than those of the non-tornado pro-
ducers", which "indicates that the tornado-producing thunderstorms were all
cyclonically rotating, right deviating severe storms." Burgess and Brown
[73], in an analysis of Doppler radar data from a right moving thunderstorm,
observed that the right © _ving cell (referred to as the Davis storm) pos-
sessed all of the radar supercell characteristics. "At least five short-

lived torradoes occurred" in the Davis storm area.

2.11. Low-Level Vorticity

Positive low-level vorticity and mid-level positive vorticity advection
are indicative of severe weather which produces tornadoes. Vorticity is a
vector quantity @ which measures rotation. If G, Qs and Q, are the
components of Q and u,v, and w are the components of the velocity vector V
with respect to axes x.y,z, which are fixed in the earth, then the relative
vorticity Qz is defined as below:

B & _
The term verticity (or relative vorticity) usually refers only to the verti- |
cal component 2, which measures spin in the horizontal plane. A parcel of
! air which rotates in the same sense as the Earth does in space is said to

have positive, or cyclonic, vorticity. In order to comoute vorticity "all
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that need be measured is the velocity of the air. If this could be done with

sufficient accuracy over a large area, it would be possible immediately to
construct charts showing how the vorticity of the wind is distributed"
(Sutton [61]).

Low-level cumulus clouds which exhibit cyclonic shear and curvature are
indicative of positive low-level vorticity. Positive vorticity advection
“"can be identified where there is a small area of enhanced convective activ-
ity or, in certain cases, a formation in the shape of a comma" (Anderson [74]).
"Cellular cloud patterns aid in the identification of..regions of positive
vorticity advection." According to Clark [76] positive vorticity advecting
over an area at mid-tropospheric levels can be "best defined on IR imagery
as middle-level alto clouds as opposed to higher, colder cirrus clouds."

Positive low-level vorticity has been shown by Charba [76] to be corre-
lated with the outbreak of tornadoes. Parmenter [76] observed from movie
loops of visible SMS-2 imagery a low-level circulation with the comma pat-
tern associated with rain/snow producing sub-synoptic systems around a large
Gulf of Alaska low. The compact and well-defined nature of a vorticity com-
ma cloud system, observed by Mathews and Johnston [76] was believed by the
authors to imply "a concentration of positive vorticity advection (strong
upward vertical motion), and thus [be]...indicative of the severity of this
thunderstorm outbreak." The importance of mid-tropospheric vorticity ad-
vection in indicating waves on fronts which were associated with areas of
heavy precipitation was illustrated in an analysis of frontal cloud systems

by Parmenter and Anderson [74].
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2.12. Upper-Level Divergence and Low-Level Converaence
Convergence and divergence refer to the accumulation and depletion
(respectively) of mass in a volume of fluid. Low-level horizontal conver-
gence implies that air is crowded into a smaller horizontal area and, since
it cannot accumulate there, is forced to move upwards. As the air ascends,
it cools adiabatically and condenses its water vapor into clouds, rain, and
snow. Except in small-scale disturbances such as tornadoes, the rate of
change of pressure at the surface is small ("barometric tendency") which
means that the totel divergence in a column of air must be small. Therefore,
in order to "balance a large convergence of air in the lower levels of a
cyclone, there must be a slightly greater divergence aloft” (Sutton [61]).
The mathemotical term "divergence" includes both the meteorological con-
cepts of convergence and divercence. If u,v, and w are the components of
the velocity vector V in a coordinate system with axes x,y, and z, then the

horizontal divergence of V is defined as

3 _ _ou 4 ay
d“” Vo= OX ey

For positive divy V, divergence is said to occur and for negative divy V, con-
vergence.

The presence of convergence or divergence is, in practice, often esti-
mated from the confluence or diffluence of the streamlines. Areas of con-
vergence may appear in satellite imagery as very fine, closely spaced cloud
bands (Holroyd [71]). Interoretations of cellular cloud patterns may enable
the meteorologist to identify divergent flow in the cold air behind polar
fronts over orceanic arcas (Anderson [74]).

Auvine and Sikdar [ 73] pointed out that "divergence in the upper atmo-

sphere gives a general indication of the region of upward motion." They con-
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cluded that "fields of divergence and relative vorticity obtained from the
(wind) vectors exhibit a consistent pattern with reference to the location
of the jet axis and thunderstorm precipitation area". They noticed, however,
that although the precipitation areca was associated with an area of diver-
gence, the location of maximum diverdence did not coincide exactly with the

location of the severe storim precipitation arca. Among the features ob-

served by Scofield [5] when tracking an upper air disturbance which produced
heavy snowstorms were positive vorticity advection and upper air divergence.
Storms are often reported in the area of convergence of land, ocean, and
sea breezes. A discussion of a variety of factors which influence the de-
velopment of the sca breeze can be found in Purdom [74]. Local areas of con-
vergence of the sea breeze lead to a strengthenina of the cumulus activity

along the sca breeze front with thunderstorms often forming along the merging

of convective lines such as those resulting from two sea breeze fronts (for
example , see Purdom [74] and Scofield and Meiss [76]). The convergence of
the daytime winds blowing from the sea and the Guif toward the Florida penin-
sula was one of the factors suagested by Edinger [67] which accounted for

Florida's summer thunderstorms.

2.13. Speed-of-Cell Movenment

An important feature for estimation of the severity of windstorms is
the speed-of-cell movement. Displacements can be measured from pairs of en-
hanced infrared images using systems such as the ISI (Interpretation Systems
Incorporated, Model #150) available at NESS (National Environmental Satellite
Service) by locating the intersection of two cursors over the initial and
final positions of the cel!l. Displacement of arc clouds which represented
the leading edge of a gust front was compared by Gurka [76] with Tow-level

wind speed.  The results of the analysis revealed that "rapidly moving arcs
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are gencrally associated with strong low-level winds".

2.14. Merging Cells
Investigations by Simpson and Woodley [71] indicate that merging cumu-

lonimbus cells "of ten produce more than an order of magnitude more rain than

isolated clouds on the same day, probably owing to dynamic invigoration of
the merged cloud circulations". The authors suggested that "merger and
organization are probably the first necessary steps in the formation of
squall lines, trepical storm rainbands, and the giant cumulonimbus systems
that fuel the large-scale equatorial air motions". Procedures for increasing

the estimate of convective rainfall based on occurrence of merging thunder-

storm cells were incorporated into Scofield's model for convective rainfall :
estimation (Fig.1). The merger of thunderstorm cells can be clearly seen in |
sequences of enhanced infrared images. Merger can also be detected in se-

quences of high-resolution visible imagery.

2.15. Splitting Cells

Splitting cells and right (orleft)deviating storms are two severe storm
features which usually occur together. A cumulonimbus cell is split into
two separate sections when one of its members is rotating. The cyclonically
rotating member moves to the right (right deviating storm) and tends to be
tornadic. The right moving, tornado producing Davis storm studied by Burgess
and Brown [73] resulted from the splitting on April 19, 1972, of an iso-
lated thunderstorm over Western Oklahoma. After the split, the left moving
section traveled 22 degrees to the left of the mean tropospheric wind while
the Davis storm (the right moving section) traveled 25 degrees to the right
of the mean wind. Figures 5-E£-6 (i through 1) of Anderson [74] illustrate
the correspondence betwcen splitting cells and tornado threat areas in both

radar data and visible satellite data. Splitting cells can also be observed in

sequences of enhanced infrared imaqgery.
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3. AMlgorithms for Automatic Detection and Tracking of Scvere Storm Features

The algorithms presented in this section address the four major problem
areas below:

1) cloud classification

2) cloud segmentation

3) cloud geometry

4) cloud tracking
A review of algorithms applicable to the above topics and suggestions for future
algorithmic development are included in this section. Cloud classification is
the first step in identification of severe storm features. In order to deter-
mine wind fields, clouds must be classified into height categories. A descrip-
tion of cloud type is implicit in the nomenclature itself of some of the severe
storm features. Low-level cumulus cloud line feeder bands consist of clouds of
cumulus cloud type. Merging cells, splitting cells, etc., are features of
cumulonimbus clouds. Positive vorticity centers are best defined as middle-
Tevel alto clouds (Clark [7€). !hen using GOES imagery in severe weather fore-
casting, observing cloud types and their change with time is used to infer
changes in thermodynamic instability (Purdom [76b]). If cloud classification
systems classify on an area basis instead of a point-by-point basis, cloud-
seguentation techniques must be applied to obtain an outline of cloud features.
The cloud scgmentation of an area of satellite imagery can be partial (looking
only for cloud features of a desired cloud type and shape) or total. If the
cloud segnentation algorithms result in outlining and labeling cloud objects
by cloud type only, shape properties (such as comma-tail, arc-shaped, line-
shaped) must be determined by algorithms designed to characterize the geometrical
properties of the segmented cloud objects. To detect on-going changes in shape

and/or motion, cloud objects must be tracked from frame to frame.

A




3.1. Cloud Classificetion

A brief survey of cloud classification studies is followed in Sections
3.1.1. and 3.1.2. by a more comprehensive discussion of major cloud classi-
fication studies arranaed within each section in chronological order. Methods
to discriminate clouds from clear areas are presented in Section 3.1.1. The
development of automatic cloud-type classification systems is reviewed in Sec-
tion 3.1-2.

The problem of distinguishing clouds from clear arecas was approached either
from the standpoint of selection of appropriate thresholds or weighting func-
tions. Arking [64], ¥atz [64], and Stamm and Vonder Haar [70] investigated
methods for selection of a single threshold from visible measurements. These
methods included manual selection of thresholds from series of thresholded

images and/or comparisons of line plots of relative radiance vs. sample number

wv

and automatic selecticen of thresholds from gradient images and histograms of
visible data within a qrid area. Shenk and Salomonsen [71] explored the ef-
fect of varying the ratio R of areal-cloud-size-to-areal resolution element

on estimates of actual cloud cover. They concluded that the value of R must
oud-cover estimates obtained by single-threshold methods
were to be valid. PBoth Shenk and Salomonson [71] and Miller and Feddes [71]
designed multiple threshold methods using weighting functions to estimate per-

centage of

cloud cover.
Most of the cloud classification studies were conducted using cloud-type
informaticn over occans. Over the oceans, the clear area is, in general,

homogenecous; radiance spread is less than over land and difference in radiance

levels between ocean and clouds is greater than that between land and clouds.
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Threshold selection techniques to determine sea-surface temperature were

developed by Smith et al. [70], Smith and Rao [72], and Leese et al.[71]. In

tropical oceanic areas, either the sca-surface temperature (or a linear func-
tion of the sea-surface temperature) could be used to discriminate clouds from
background. The lincar function used by Koffhr et al, [73] to separate clouds

from clear arca was T - 5°C, where T was the seca-surface temperature for the

given grid area.

Cloud-type classification systems using only visible data characterized
cloud types by form, pattern, texture, and dimensions or layers of the patterns
and forms. The guides to interprctation of TIROS satellite pictures preoared
by Conover [62] motivated several of the earlier studies. Rosenfeld [65] de-
termined optimal window sizes for discrimination of cloud patterns into cate-

gories such as "brokenncss", elongation, fibrosity, and convexity. Leese [64]
used statistical methods to determine synoptic-scale features for classifying
low-Tevel cumuliform cleud patterns which occur over the oceans by cloud amount,
size of the cumuliform cells, and size of the cloud bands. Cell size was

found to be related to the location of the observation and the wind velocity
field. Cloud amount was related to the location of the observation with ref-
ercnce to the center of the anticyclone, to the latent heat transfer between

the ocean surface and the atmosphere, to the wind fields at the surface and

at the 850 mb level, and to the air-dewpoint temperature difference at the
surface. Surface wind speed was also an important factor in discriminating W
among groups of cloud bands. Katz derived motion-invariant features based on
the autocorrelation function to measure the direction and the degree of align-
ment of cloud streets. Darling and Joseph [G8] tested seven different pattern

recognition techniques for discrimination of noncumulus clouds from cumulus
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clouds and solid cell cumulus clouds from polygonal cell cumulus clouds.

The screening multiple regression technique with four or fewer discriminators
performed as well on independent samples as other techniques which used 300 to
400 properties. Booth [72] used multiple discriminant analysis techniques and

+

perceptron training methods to isolate single-layered, low-level cloud regions.

In order to resolve ambiguities between cloud classes, the author recommended
the additicn of infrared features to the pattern vector.

With the availability of multispectral satellite data, automatic systems
for discrimination of cloud types (as opposed to cloud forms or shapes) were

»
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Koffler et al. [73] used NMC (National
perature values to classify clouds by height. Greaves and Chang [70] deter-
mined cloud-type signatures from design samples of NIMBUS-2 cloud data over the
f

continental lnited States in which there was relatively uniform cloud cover and

idup. The point-by-point classification method of

Greaves and Chang [70) successfully identified all cloud types except for cumu-
lus and cumulonimbus. The lack of success for cumulus-type clouds was attrib-
uted to the nonhomogeneous nature of the cloud field, A combination of thres-
holds derived from a radiative transfer model, climatological knowledge of the
upper boundaries ot cloud-type surfaces for a given area, and expected reflect-
ance values for cloud types was used by Shenk and Holub [72] and Shenk et al.

[ 76] to establish four-channel cloud-type signatures for cloud types over tropi-
cal ocecans. [Dooth (73 ] combined statistical pattern recognition techniques
with featurc extraction methods to classify high-resolution, dual-channel
NOAA-1 cloud samples over tropical occanic regions. A comparative study of
selected feature sets ond statistical pattern recognition techniques to classi-

fy tropical oceanic-ci types was conducted by Parikh [77a]. Classification
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accuracy deteriorated depending on the complexity of the cloud-type decision
problem. Optimal thresholds, either for point-by-point cloud-type signatures
or for decision regions in feature vector space, did not remain constant with
change in location or season of observation. A method of cloud classification
by cloud-sample segmentation and comparison of segment features was developed
by Parikh [77b]. The method was independent of design samples or prior thres-
hold selection techniques. A1l of the above multispectral techniques except
for that of Greaves and Chang [70] have been tested primarily or exclusively
on cloud data over oceanic regions. Further study is needed to determine what
modifications must be made either in cloud-type signature classification sys-
tems or feature-extraction classification systems to discriminate cloud types

over land.
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Distinqguishing Clouds Fromn

The earliest attempts to separate clouds from backgrou

involved finding a brightness threshold ¢ such that all poi
with brightness values above c were designated as clouds an
points with brightness wvalues egual to or iess than c were

E-

S

dalese
L

the detectien of (he presence o uds against a darl <
ground such as the ocean surface., Accoréing to Stamm and
Vonder Haar [70 ], a histogram of the freguency at which a
ce level occurs within a grid esrea will centain
a of roughly Gaussian shape representing a clear area
provided the clear area 1s homogeneous (ocean surface rathe
than land surface). Howeyer, even for ocean surfaces 1E 1s
difficult to decermine to the right of the
Gaussian clecar-areca peak at which cloud interfercnce is be-

IRportdnc.

comina

Limitations of sensox as variable

brightness responscs for a cloud of given rcflectivity must

be considered for both manu:l and automatic estimates of
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cloud cover. Thin cirrus is transparent or semitransparent
and the reflectance characteristics of the underlying back-
ground determine the recorded brightness intensity level.
Small cumulus clouds below resolution size cannot be cecn

on the imagc but their brightness affects the sensor reading.
Variabilities of the signal within a camera system, changes
of response from one system to another, weakness in the cross
track normalization techniqgue, changes in camera calibration

and degradation in camcra response substantially alter the

Py

brightness response of individual cloud elements from day to
day.

In 1964, Arking [64] discussed the problem of cloud/back-
ground threshold selection in connection with automatic
analysis of Tiros III television pictures to determine lati-
tudinal distribution of cloud cover. Arking's approach was
to employ the subjective judgment of a human observer to
comparc a series of two-level thresholded images to the
original satellitc image to determine which of the thresholded
images most faithfully reproduced the cloud boundaries of the
original image. TFor each orbital sequence a new threshold
was chosen. It was found, however, that the same threshold

could be used for each satellite picture within a given orbit.

Katz [64] constructed a gradient image to automatically
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determine a brightness threshcld. The gradient image is de-

fincd as the image whose value at every point is given by

[l 6 [] = ./(az/a>;)2+(a;r/ay)2
wherc I is the brightness value of the given point. || G ||
~an be approximated by || G || where
|| € || = max{|31/0x]|,]|01/8y]} + % min{|8I/8x]|,|81/3y]|}.

In order to facilitate handling the pictorial data in packed
form, the quantity actually used for computation of the gra-

. The cumulative fregquency percentile

dient image was 2 ||G]
was calculated for each gradient level in the gradient image.
The smallest gradient level g for which the cumulative fre-

quency percentile was greater than or egual to a given value

p was then selected. Experimental results were calculated

for p = 75%, p = 87.5%, and p = 93.7% with the value of
p = 87.5% the personal choice of the author. The average
intensity of those points at wﬁich the gradient was at least
T g was used as the threshold for cloud/background separation.
Shenk and Salomonson {71] suggested using two bright-
ness thresholds to divide the satellite image into three
data sets -- data wherec the resolution element is clear, data
wherce the resolution element is partially cloud filled, and
data where the resolution element is completely cloud filled.
Let Nl
F - number of points in the second data set, and N, the number of

be the number of points in the first data set, N2 the
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points in the third data set. Then the percentage NC of cloud
cover was calculated as

N_+2N

S

2(N1+N2+N3)

The association of a weight of 1 with elements in the second
data set and a weight of 2 with elements in the third data
set implies that a cloud cover of 50% is assumed for every
partially cloud-filled resolution element. This two-threshold
method is contrasted with the single-threshold method which
divides a satellite image into points where the resolution
element is clear and points where the resolution element is
partially or completely cloud filled. For a typical situation
in the tropics in which the average cumuliform cloud size is
4 km and for a typical scnsor resolution of 4 km, the single-
threshold metliod would estimate a true cloud cover of 20% as
70% cloud cover. The authors concluded from studies on simu-
lated data and high-spatial resolution (300 feet) Apollo 6
photographs that the value of the ratio R of areal cloud size
to arcal-resolution element must be at least 100 if cloud
cover estimated from single-threshold methods and actual
cloud cover are to agrce within approximately 10%. However,
if cloud cover is estimated by the two-threshold method, good
cloud cover estimates result for values R 2 10. If the value
of R is known, nomograms presented by the authors can be used
tc obtain true cloud cover from estimated cloud cover.

The question of automatic selection of the one or two

brightness thresholds did not arise in the study of Shenk and
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Salomonson [71). The single-threshold method applied to
simulated and high-resolution cloud data involved counting
manually for cach of seven resolution sizes the number of
resolution eclements which contained no cloud elements. Simi-
larly, for the two-threshold method, a manual count was made
of those resolution elements which were partially cloud
filled and of those which were completely cloud filled.
Automation of a multiple threshold, weighted histogram
model for cloud-cover estimation was described by Miller [71]
and Miller and Feddes [71]. Satellite image data compressed
from a 0~63 scale to a 0~14 scale was divided into the five
egually-spaced brightness ranges 0-2, 3-5, 6-8, 9-11, and 12-
l4. With each brightness range was associated an empirically-
derived seasonal weight. For October-May, the weights
Wi, i=1,...,5, for the five brightness ranges were 0, 2, 7,
B, B, respectively. For June-September, the weights
W., i=1,...,5, for the five brightness ranges were 0, 2.5,

7.5, 8, 8, respectively. Higher weighting of classes 2 and

3 for the summer months reflected the increased frequency of
] occurrence of small cumulus cloudiness during the summer.

The percentage N, of cloud cover was calculated as

3> W.F.
-
Ny = (————) +k
64
|
| where
% Wi = weighting factor for class i
E Fi = frequency of occurrence of the ith class
E k = 0.51, a computer t.uncation constant.
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The Nc values, although in general agrecment with concurrent
surface observations, showed a consistent tendency to under-
estimate surface reports of cloud cover. Miller and Feddes

[ 71) ascribed the differences primarily to differences be-
tween the field of view of the surface observer and the angle
of view of the satellite camera (which resulted in an over-
estimate of cloud cover from surface observations) and to the

-
1
<

lower response threshold (i.e., lack of sensitivity to thin
cirrus or to small, cscattered convective elements) and re-
solving powecr of the satellite sensor. The authors concluded
that the automated values for Nc were at lcast as good as
those which cculd be derived by eye from satellite pictures.

A threshold T can be applied to infrared measurements of
cloud data te discriminate clouds from background. Over the
occans, an appropriate value for T for each grid area of the
image would be either the sea surface temperature T within
that grid arce or T-k where k is some small positive constant.
Koffler et al. [73) subtracted a constant of 5°C from the sea
surface temperature to determine the grid area thresholds T.
All grid points with infrared temperaturec greater thar or
equal to T were classified as background points.

A statistical histogram method to determine the sea sur-
face temperature values T from nighttime 3.8 um infrared data
is given in Smith et al. [70]). The following procedure was
used to analyze the temperature histogram. If a clear dis-
tribution (Gaussian) could be detected such that the maximum fre-

quency of a point of the clear distribution was both at a temperature
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grecater than freezing (273°k) and greater than 10 percent of

the total number of observations, then the histogram was con-
sidered to be sufficiently cloud free to be acceptable for
the second stage of analysis. Find the point Mslope on the
high temperature wing of the clear distribution where the
change of frequency with temperature is a maximum,i.e., the

point of maximum slope. Define M as the highest observed

high
temperature value with a freguency greater than 1 percent of

the total number of observations. Define T as

s Mslope = @

where

0 = known standard error of measurement
For this study (Nimbus 2), 0 = 1.5°K. T will usually be
greater than the modal peak temperature of the clear distri-
bution when clouds exist. If the difference between Mhigh
and T is greater than 30 or if the change of frequency with

temperature at M is less than 3 percent per degree KX,

slope
then the high tcemperature wing of the clear distribution is
influénccd by cloud-contaminated measurements and sea-
surface temperature cannot be specified. Otherwise, specify
the sea-surface temperature as T.

Sea-surface temperatures for areas of severe cloud con-
tamination were inferred through space and time interpola-
tion procedures. In a few cases in which the histogram

technique failed to differentiate betwecen cloud-free and

cloud-contaminated temperatures, errors were attributed to

the existence of low-level, uniform, overcast conditions.
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The authors suggested using either spatial gradient consis-
tency checks and/or time compositing techniques to filter out
erroncous sea temperatures. Relative discrepancies between
the histogram sea-surface temperatures and ship-reported sea-
surface temperatures were generally less than 1°K.

Smith and Rao [72] developed an algorithm to determine
both daytime and nighttime sea-surface temperatures from
spatially contiguous sets of simultaneous 3.7pym and llpm
infrared measurements. The contiguous resolution elements
were assumed to have the same average cloud temperature and
sea-surface temperature, i.e., the same type of cloudiness
conditions. Fcr resolution elements 1 and 2 and spectral
windows 3.7 ym and 11 ym, the ratio of the cloud amounts of
the two resolution elements were equated for each spectral

window, i.e.,

I3, = By 5(Tg) _ 1)) - Byy (Tg)
15,5 - By,7(Tg) Ij) - By (Tg)
wvhere
IZ = measured radiance for resolution element r
for spectral wavenumber S
BS(TS) = Planck radiance for spectral wavenumber S

The Planck radiance BS(T) is a function of temperature which
is given by

3 . -
BS(T) = C,;5 / (EXP (C,8/T) 1)

wherce
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C 1.19061 x 10-'5 erg-cmz-sec

1

LI}

C

P 1.43868 cm~deg

If the relation R(T) is used to Adenote the result of equating
the ratio of cloud amounts for the two spectral windows, i.e.,
L 2 2 i 2 i 2 1
ROURY = TES o= - - = =
(T) = I3 T31713 4111+B1q (D) [I3 4-I3 5)-Bg . (T)[I],-I7;), then we
can solve for Tg (sea-surface temperature) by setting
R(T) = 0. The first order Taylor approximation for T (where

the superscript k denotes a quantity evaulated for the kth

iteration) is civen by

P L gk L gy 2R 4K
where
T T SIS S0 S - S P NP I Pl S By
oT 357 3.7 aT 11 11

With an intial guess temperature of 310°k, a solution was
usually obtained in less than five iterations. This multi-
spectral approach was one method used by Smith to resolve
the problems of interpretation of daytime 3.7 um data in
which cloud contaminated temperatures can be equal to or
larger than clear sky brightness temperatures.

Another approach suggested by Smith for determining sea-
surface temperatures using single-channel data was described
in a paper by Leese et al. [71]. This method assumed a
Gaussian distribution of the system noise, but unlike the
method of Smith et al. [70] previously reviewed, the value ©

of the standard error of measurement (noisc) was not assumed

to be known. Given any three temperature classes of the
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clear distribution, the sea-surface temperature Tq which is
the mean value of the distribution from clear atmosphere

samples was computed as

2 2
3 il

2(ry - T2) 1n Fl/F3 - 2(Tl - T3)ln Fl/F

2 2
(T - Tl )1n Fl/F2 + (T - T2 )1n Fl/l"3

2

where
T., i =1, 2, 3 is the ith temperature class
F., i =1, 2, 3 is the frequency of occurrence or<

temperature class Ti’

A discribution of values of T, was obtained by using a number

S
of combinations of temperature classes taken three at a

time. The mean value of this second distribution was used as
an estimator for the sea-surface temperature TS' Six cloud
and noise contamination tests had to be passed by the second
distribution of values for Tg for the sample to be retained
for sea-surfacc temperature calculations. Since cloud layers
can produce histograms of the same shape as those obtained
from a clear atmosphere, Leese suggested that instead of just
restricting T to be above 273°k, a suitable test should be
developed on the basis of first-guess fields. A first-guess
field for the seca-surface temperature value could, for ex-
ample, consist of the previous day's temperature combined
with appropriate limits for acceptable twenty-four hour
changes (obtained from gradient calculations). Results in-
dicated that errors of less than 1°C should be possible for

areas where the temperature gradient is less than 2°C per
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100 km. For regions where the temperature gradient was 2 to
4°C per 100 km, visual data should be included to reduce
cloud contamination errors. Improvements may be needed in
earth location procedures if an error of less than 1°C is to
be maintained for regions in which the temperature gradient
is larger than 4°C per 100 km.

Stamm and Vonder Haar [70] suggested as a result
of threshold studies in the visible channel that some com-
bination of threshold criteria in several spectral channels
would be able to detect cloud contamination with better pre-
cision than single-channel thresholds. They investigated two
threshold methods for the visible channel. The first method
compared a line plot of relative radiance vs. sample number
to a corresponding line on the given picture to manually de-
termine a threshold between cloud and background regions.
The second method analyzed the histograms of radiance levels
within a given grid. For grid areas over oceans with a
reasonable amount of clear area, a large peak of roughly
Gaussian shape represented the clear area. By forming a
Gaussian curve from the data on the left-hand side of the
peak (the side free from cloud interference), iF was possible
to predict the clear area peak. The point at which the
Gaussian curve starts to rise again, or a few radiance levels
to the cloudy (right) side of this clear area peak, was
chosen as the threshold. When in doubt, the threshold was

chosen to overestimate the cloudy regions.
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3.1.2. Automatic Cloud-Type Classification Systems

Various automatic cloud classification systems using
features derived from visual satcilitc data, infrared satel-
lite data, and multispectral satellite data have been devel-
oped from 1964 to the present date. In this section, a brief
survey of techniques and results of single-channel cloud clas-
sification systems is followed by a more comprehensive review
of multispectral systems.

Conover [;2] published in 1962 a guide to cloud inter-
pretation from satellite pictures. Features selected to dis-
criminate cloud tyvpes were form (round, curved, or elliptical),
pattern (banded or randomly spaced), texture (smooth versus
fibrous), brightness, structure, and dimensions of the

patterns and forms. Each cloud type was associated with one

i i

of four brightness classes -- dark gray, gray, white, and

very white. The author suggested use of automatic methods
for cloud reflectivity contouring as an aid to photointerpre-
tation of satellite images. The idca of characterizing

cloud types by ranges of measurements in one spectral window
was a forerunner to completcly automated cloud-type classifi-
cation schemes such as that of Shenk and Holub [72] in which

ranges of measurcments in four spectral windows specified a
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unicue cloud type.

In 1964, Leese [64] applied multiple-discriminant
analysis technigues to the problem of classifying low-level
cumuliform cloud patterns by cloud amount, size of the cumu- {
liform cells, and size of the cloud bands. Twenty-three "
synoptic features consisting of variables such as latitude,
longitude, mean solar time, surface-gecstrophic wind speed,
and latent heat flux were used to categorize the cloud
patterns into cloud cover groups, cloud size groups, and
cloud banding groups. Cloud amount was found to be most
Closely related to the location of the observation with re-
ference to the center of the anticyclone., Size of the
cumulus cells was most closely related to the structure of
the wind field between the 850-mb level arnd the surface.
Discrimination resuvlts between cloud banding groups were not
as successful as discrimination results between cloud amount
groups and cloud siz2 groups. More objective techniques for z
the criginal description of the cloud patterns (such as in-
creased number of cloud amount groups, information on cloud

patterns on different size scales, and a coordinate system

e K M S RS

to describe the location of the observation in the anti-

cyclone) combined with improvements in the sensor system of

the satellite were suggested as possible factors which would

improve classificaticn results. In particular, two-

2 dimensional spectral analysis techniques such as numerical
filtering shculd be used to provide information about cloud

[ patterns on at least thrce scales -- the synoptic scale
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(more than 50 mi), the mesoscale (between 10 and 50 mi), and
the submesoscale (less than 10 mi).

Rosenfeld [ 65] discussed a scanning window approach to
automatic classification of cloud patterns into categories
represcnting sparseness or "brokenness", fibrosity, elonga-
tion, regularity, straightness, and convexity properties,
Quantitative measurement scales for these parameters were
derived from psychological studies of human judgments of
these parameters in a series of cloud photographs. In oxder
to discriminate between solid black (background), solid
white (cloud), and broken cloud regions, the number of back-
ground elements in the scanning sguare window of an image
was counted for each position of the window. If the number
of background elements fecll below a threshold Tw, the sqguare
was called solid white. If the number of background elements
was greater than a threshold TB where TB = Tw' the sguare was
categorized as solid black. Othcfwisc, it was considered as
broken cloud. Boundaries between regions of different types
were marked. Suggested window sizes for discrimination of
cloud patterns with respect to the abeve parameters were
5%5 resolution elements for "brokenness" and 15x15 resolution
2lements for shape and size properties.

Katz [64] derived motion-invariant features to describe
the degree and direction of alignment of striated clouds and
considered features which would give information about the
distribution of cloud sizes in a region. The ratio of the

axes of the cllipse of concentration of the central hump of

the autocorrclation function p(h,k) was usecd to measure the
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degree of alignment of cloud streets. The direction of the
major axis was taken to be the direction of the streets. The
ellipse of concentration was taken as the contour enclosing
the central hump of p(h,k) for which p(h,k) = 0.2. The di-

rection of the major axis of the ellipse was given by

2494

tan 20 = =
20702

where “ij are central moments. The ratio r of the .axes is

¥ = Vxl/xz ; where Al and Az are the roots of

5 03 &
(iogMpaHya ) A7 = lugy * Hopdi + 1 = 0.
The autocorrelation function p(h,k) is the normalized (divided
by the individual variances) autocovariance function C (h,k)
where
Cth, k) = jJ[I(x,y)—m][I(x—h,y-k)-m]dxdy
with

brightness level at point (x,y)

1!

I(x,y)

mean value of I

1

m

The feature a(t) described by Blum [g2] where a(t) is the
area at time t of the region enclosed by a wavefront moving
from a pattern at constant speed in all directions was pro-
posed to characterize the distribution of cloud sizes. As
the dark arcas overrun the cloud areas, the clouds begin to
disappear =- for a convex cloud, this would happen in the
time it takes the wave to traverse half the width of the

cloud.

Darling and Joseph [.3] applied five linear decision
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techniques, one nonlinear decision technique ("Madaline"),
and a screening multiple regression technique to categorize
cloud patterns into cumulus and noncumulus classes and to
categorize cumulus clouds into cumulus polygonal cell
patterns and cumulus solid cell patterns. For the linear
decision function techniques and for Madaline, a group of n
thresheld units bi(j)’ i=1,...,n were randomly connected
to elements in the pattern space. The output of the ith
logic unit bi(j) for the jth pattern is 1 if a function of
its inputs exceeds a threshold and 0 otherwise. The thres-
hold was defined by a quadratic switching surface

Ak

X iy

(24 2"l)x—2xT(Zl'lnl<22"lmz)+M1T21_1M1-M2T22'1M2+1n(|Zl!/|221)=0
where vectors My and M, are sample means and Zl and 22 are co-
variance matrices for classes 1 and 2 respectively and X is the
pattern vector. The form of the decision function D(j) for
the lincar-decision technigues was
B .
D(5) izlwibi(J) =

wi,i =1,...,n are property weights

¢ is the response unit Lﬁreshold
Weights and response function were calculated according to
the following five algorithms -- forced learning, Bayes
weights, error correction, iterative design, and mean square
error. The first three methods are associated with the « %

perceptron of Roscnblatt. For Madaline, a second layer of

threshold-logic units was counccted between the first set and
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the response unit (decision function).

For the screening multiple regression technique, twenty-
eight features computed from a binary representation of the
scene were screened at the 0.01 level. For this technique,
the decision function was a linear multiple regression equa-

tion of the form

b eRE

L TR LR O
0 P

i R
{inq/(nl+n2) in class 1
x P e

-n n.+n in class 2
X, 1s an estimate of xo
n., is the number of samples in class i

%y is the deviation from the mean value calculated over

=

both cla

w0

ses

li's are constants to be determined by least sguares.

At each step, the particular Xy having the highest correla-

-

tion Ios with %o 1s added to the equation if the reduction
in variance Tos is greater than 0.01. The correlation oy

is defined as

T =
01
where
di = difference between the mean value of xi in class 1
and its mean value in class 2
Sii = sum of squarcs of X; over both classes.

The value of 2y is given by
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Sii(nl+n2)

Aftexr the selection of each Xy the remaining xi's are ortho-
gonalized with respect to the selected x; to yield an equa-
tion for ;0 with uncorrelated terms. The decision rule is: if
i 1

Xg > - 5[(nl—n2)/(nl+n2)], assign the pattern to class 1.
Otherwise, assign the pattern to class 2 if

;0 g %[(nl-nz)/(nl+n2)]. For the classification of non-
cumulus versus cumulus clouds, the features chosen were the
80-contour arca (area bounded by the Y axis and 0.80 auto-
corrclation contour for X > 0), the brightness variance, and
the relative freguency of cloud size 1 to 25 (i.e., from 1

to 25 resolution elements).

Decision accuracies for the error correction procedure,
iterative design, Madaline, and screecning multiple regression
techniques were close to 902. The authors noted that the
screening multiple regression technique with only three to
four discriminators performed as well or better than the
other techniques which used approximately 400 properties.
They rccommended enlarging the set of features to include in-
formation content in the derivative, curvature, gradient,
and Laplacian of the brightness image, the coefficients of
the power spectrum, and the characteristics of the auto-
corrclation function obtained by rotating a pattern about its
center of gravity.

Booth [73] categorized 32x32 visual arrays of ATS-1

images into @ 5-group model and a 3-group model using multiple

51




discriminant analysis and perception training methods. The
5-grcup model consisted of
(1) predominantly single-layered, low-level (£ 8000 ft)
cloud regions
(2) predominantly single-layered, middle- or single-
layered high-level cloud regions
(3) predominantly multi-layered or large convective
cloud regions
(4) cloud regions containing more than one of the above
groups with one group not dominant
(5) none cf the above (i.e., overcast and clear-sky
cloud regions).
The 3-group model consisted of classes 1, 2, and 3 above.
Results of multiple discriminant analysis using forty-six
features assumed to be normally distributed with the same
covariance matrices ranged from 68% decision accuracy for
group 1 independent (test) data for thé 5-group model to
92% decision accuracy for group 1 indepencdent data for the
3-group model. Every misclassified group 1 sample was
labelled as group 3 by the multiple discriminant classifier
-- thus pointing out the confusion between groups 1 and 3.
Tests on independent data were performed exclusively on
observations from group 1, since the primary intent of this
classification system was to isolate those regions which
would be suitable input target areas for the automated
operational system of NOAA for computation of single-layered,

low-level wind vectors.
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Experiments to separate group 1 from the combined groups
2 and 3 by percoptéon analysis failed after 454 iterations.
The similarities between groups 1 and 3 obviously led to the
lack of linear scparability between observations from group 1
and observations from groups 2 and 3. Pcrcoptfon classifica-
tion of 787 test obscrvations into cloud and no-cloud groups
resulted in 653 (83%) observations correctly classified.

Suggestions by the author for improvement of decision
accuracy were to

(1) ccnstruct a new 5-group model consisting of low-

level single-layered regions, middle-high level
single-layered regions, multi-layered or convective
regions, overcast regions, and clear-sky regions,

(2) augment the pattern vector with features from in-

frared satellite data such as cloud-top temperature
to help resolve ambiguities, for example, between
groups 1 and 3, and

(3) generate an optimum input pattern vector by per-

forming screening analysis on features derived from
the satellite data.

Satellite infrared radiation (IR) temperatures segmented
at ecach grid square (32x32 IR spots) into four intervals de-
pendent on synoptic temperaturc fields obtained on a l2-hour
basis from the National Mcteorological Center (NMC) were used
by Koffler et al.[73] to gencrate pictorial displays of cloud-
type information consisting of four gray shades. Each of the

four gray levels represcnted a cloud catecory as shown in
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Table 2.1 below.

Cloud Top Height

Gray Shade Temperature Interval Cloud Type Interval ‘
black Infrared Temperature no clouds g
= 'm0 l

&ll.)C .

dark gray Tl—5°c > Infrared Tem- | low clouds | surface - 700 mb |
perature > TZ layer ?

light gray Tz 2 Infrared Temper- micdle 700 mb - 400 mb |
ature = T3 clouds layer |

|

white T3 > Infrared Temper- high above 400 mb i
ature clouds layer E

Table 2.1: Cloud classification system of Koffler et al.[73]. Threshold i
values To, T.; T3 represent, respectively, NMC temperature
area at the surface, 700 mb, ancd 490 mb.

Assump*tions inherent in the use of this classification scheme

are:

(1) clouds are completely opaque,

(2) radiation emanates from cloud tops,

(3) there are no ropid atmospheric changes in the time in-
terval between the NMC data and the infrared temperature
data,

(4) the earth's actual surface temperature is constant over

the arca of a grid sguare and équivalcnt to the NMC-

supplicd carth surface temperature, and
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(5) errors causcd by assignment of an IR temperature
measurement to the lowest pressure layer in cases
of a non-unique correspondence of a particular IR
temperature to a given pressure interval resulting
from the existecnce of an isothermal or near-
isothermal atmosphere or from the existence of in-
versions, are minimal.

Assumption number (1) lecads to errors of interpretation
especially in the case of cirriform clouds. For cirrus clouds
with an ice concentration of 0.0l g-m-3 a thickness of al-
most 5 km is required to assure that the assumptioh’of
opaguencss is reasonably satisfied. Thin trailing eaécs of
cirrus which generally exhibit low emissivity may be classi-
fied, for example, in the 700-400 mb layer rather than the
layer above 400 mb. For this reason, it is suggested by
Koffler et al. [73] that the cloud data be interpreted as
lying above 700 mb rather than exactly within the 700-~400 mb
layer. If assumption number (4) is not valid over a given
NMC grid area (12 km at 45°N), then there will be errors in
the calculation of the amount of low cloud. To insure that
earth surface view is not included as low clouds, a factor of
5°C 2s subtracted from the surface temperature ﬁi supplied by
NMC.

Results obtained by Koffler et al [/3 ] show good large-
scale agreement with surface observations and pilot reports
while offering the advantage of greater gcographical cover-

agc. The authors state that "problems and errors of the
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system are probably no greater than that of the surface
observation system." There is however a tendency to over-
estimate cloud amount and undercstimatec the temperature of
cloud top heichts as a result of satellite sensor resolution.
If the size of a cloud element is near or below the sensor
resolution, the IR temperature spot will represent a com-
bination of the temperature of the surface and the tempera-

ture of the cloud, thus causing the entire area to be classi-

97

fied as cloud with the cloud@ top height placed at lower than
actuzl level. This type of error can be expected over areas
of fair weather cumulus typical of oceanic regions. The

ification system can be applied over oceanic re-

data is not avail-
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IR data as described in Rao [70].

istorically one c¢f the first attempts at multispectral

~ *

(1) &an analysis of the statistical distributions of
five cloud types using three~channel radiometric
date at spectral intervals .2-4.0 um, 6.4-6.9 um,
and 10-11 um,

derivation of cloud signatures from mean and stand-

—
N
—

ard deviations obsecrved in the reflectance channel
(.2-4.0 ym) and the tempcrature channel (10-11l um),

(3) implementation and testing of a decision system
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based on rectangular decision regions, and
(4) formal development of a decision matrix system for

elliptical decision regions.
Data from Nimbus IX at places wherc a relatively uniform
cloud cover was reported over a large area, where there was
no rapid clecaring or buildup of clouds, and where ground-
observed documentation of cloud type and cloud cover was
available were divided into a test set and a design set
which was used for devclopment of cloud-type signatures for
five different cloud types categorized as follows:

(1) cumulus

(2) stratus and/or stratocumulus

(3) altocumulus

(4) cirrus

(5) cumulonimbus.

An analysis of the statistical distributions of each
cloud type in cach of the three radiometric channels revealed
that while the distributions in the reflectance and tempera-
ture c¢hanncls cxhibited characteristic maxima and sprecads per
cloud type, the information content of distributions in the
water vapor channel (b.4-6.9 um) was low in terms of cloud-type
differentiation. A primary advantage of incorporating tem-
perature data from the water-vapor channel into a given
classification scheme was the fact that cloud data could
easily be scparated from clear skies by classifying all
points as clecar in which the temperature obtained from the

water-vapor channel was grcater than 240°K. This threshold
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proved adequate even in identification of tenuous cirrus as

cloud data. With the assumption that the distributions are

approximately Gaussian, mean and standard deviations for the

five cloud types in the reflectance and temperature channels

were computed as shown in Table 2.2 below.

Cloud Type T o (T) R o (R)

]
cumulus 274°K| 482K 0521 0.06
stratus/stra- |281°K| 2.8°K 0.59 0.06

tocumulus

altocumulus 262K 5.02K 0.54 0.08

CLEEUS 295%K]| 3.6°K 010 0.03 1
E |

cumulonimbus [224°K! 6.4°K |0.62 0.09 :

Table 2.2: Cloud-type signatures used by Greaves and
Chang [ 30].

T represents mecan temperature in the spectral
interval 10-11 um
0(T) represents standard deviation in the spec-
tral interval 10-11 um
R represents mcan reflectance in the spectral
interval .2-4.0 um
o (R) represents standard deviation in the spec-

tral interval .2-4.0 um

It should be noted that the relatively high value of T for
cirrus is a result of transmission to the satellite of ra-

diation from lowcer levels. "he standard deviation o (T) which
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represents the degree of nonuniformity in cloud-top height or
cloud thickness is seen to be maximal for cumulonimbus obser-
vations.

A given data point with reflectance R and temperature T
was classified as belonging to cloud type i if

IR = R;| =K o (R;)
and

lT . Tll

n

K c(Ti)

where ii’ ?i’ O(Ri), U(Ti) are values given in Table 2 above
and K is a range factor chosen as K = 2.5 for the given imple-
mentation. The authors suggest that the optimum value of K

for classification of most data points without excessive over-

lap betw

m

:en cloud types lies between 2.0 and 2.5. In cases
where a2 data point fell into overlapping regions of two diff-
erent cloud types, it was considered to be correctly classi-
fied if cither of the cloud types corresponded to the ground-
truth identification (which was based on data from ground
observations as well as analysis of satellite photographs).

The percentage of correctly classified data points per
cloud type were as follows:

(1) 43% for cumulus

(2) 78% for stratus/stratocumulus

(3) 72% for altocumulus

(4) 80% for cirrus

(5) 34% for cumulonimbus

The authors atiribute the lack of success in point-by-point

identification of cumulus and cumulonimbus to the nonhomogen=
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eous nature of these cloud fields and attribute the high de-
gree of success in recognition of the remaining cloud types
partially to the fact that the test samples consisted only of
regions identified as being covered by a single type of cloud-
iness. They suggest that spatial frequencies be considered to
facilitate the identification of cumuliform cloud types.

A decision matrix approach to cloud classification using
elliptical boundaries was formulated for a 2-group cloud-type
model as follows: Store in the computer memory a 20x20 de-
cision matrix D where the value of the decision matrix at
D(r,t)[where r is the rth reflectance interval (with each of

20 intervals representing a 5% increment in reflectance) and
h

ik

t is the tt temperature interval (with each of 20 intervals
representing a 5% increment in temperature)] can assume any of
the values 0, 1, 2, 3 which stand for the four possible classi-

fications 1

0 - no decision
I = cloud type 1
2 - cloud type 2
3 - ambiguous between cloud types 1 and 2
The value assigned to element D(r,t) of matrix D depends on
whether or not
[R—Ei < T-T, % 5

Lc(fi'l) C(Ti)

where N* is a range factor (similar to the factor K above),

R = 5r
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T = 5t + 200°
Ei' o(ﬁi), Ti' c(Ti) represent cloud-type signatures

similar to those in Table 2 above.

If the above inequality is satisfied for both group 1 (i=1l) and
group 2 (i=2), then the value of D(r,t) is 3 which means that
the classification is ambiguous. Once the decision matrix is
stored in the computer, the classification of any data point
is achieved by computing r and t from the reflectance R and
temperature T and then consulting the entry D(r,t) in the de-
cision matrix for the corresponding classification. The authors
suggest the decision matrix approach for future configurations
for cloud-type classification.

Shenk and Holub [72] proposed a multispectral cloud-type
identificcetion methcd based on a cloud-type decision matrix
for the four spectral regions of 0.2-4.0 um, 6.4-6.9 um, 10-

11 ym, and 20-23 ym. Decision categories were

(1) cirrus clouds

(2) cirrus with lower clouds

(3) cumulonimbus and/or cirrostratus
(4) cumulonimbus

(5) middle clouds

(6) middle clouds with cirrus above
(7) stratus or stratocumulus

(8) cumulus

(9) clear
(10) no decision

A data point from Nimbus 3 satellite imagery was classified in-
to one of the categories 1-9 if measurements in all four spec-
tral channel fell betwecen the lower and upper threshold for that

61




r S —

particular cloud type. Otherwise, the data point fell into the

no decision category. The authors recommended examining adjacent 1
cloud decisions to obtain information on cloud conditions at

*no decision" points.

Threshold values were calculated from a radiative trans-
fer model which accepted as inputs average temperature and
moisture sounds for the given test area during the study period,
a climatological ozone profile, and cloud tops at different
heights. It was assumed that low-cloud tops were at 750 mb,
middle cloud tops at 450 mb, cirrus-cloud tops above 300 mb,
and cumulonimbus-cloud tops below 225 mb.

From a total of 611 cloud-type decisions over a 30-mile
swath covered by aircraft photographs, 85 decisions were mis-

classified. Two-thirds of the misclassifications represented

a confusion between groups 1 and 2, which probably could have

been avoided by different threshold choices for the visual
channel. The remainder of the misclassifications except for
two points were the result of labelling scattered low clouds
or clear conditions as cirrus. Some of the misclassification
errors were attributed to earth location errors ih the
satellite data, spatial resolutions, and time difference be-
tween aircraft and satellite observations. Modifications in
cloud-type categories and cloud -type thresholds were later
adopted (Shenk et al. [ 76) which significantly improved
classification accuracy.

Coincident infrared and visual data from NOAA-1 satellite

were used by Booth [73]) to test the discriminatory ability of
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Bayesian and maximum-likelihood classifiers to separate 2100
cloud observations into a 6-group tropical cloud-type model
consisting of

(1) clear skies

(2) cumulus

(3) stratocumulus

(4) cumulonimbus

(5) cirrus

(6) cirrus with lower clouds
and into a 5-group tropical cloud-type model obtained from the
6-group model by combining cumulus and stratocumulus into one
group. A comparative study of the effect on each of the
classifiers of selecting feature vectors from

(1) single-channel visual (.5-.7 um) data

(2) single-channel infrared (10.5-12.5 um) data

(3) dual-channel visual and infrared data

revealed that accuracy using single-channel infrared data

approached that obtained by dual-channel classification.

A combination of features representing 32 spatial distri-

s

bution measurements and 32 spatial frequency measurements were
calculated for each 32x32 observation matrix (appcoximately
54x96 nmi.) of coincident visual and infrared data. The

spatial distribution measurements selected for both IR and

visual data were mean, standard deviation, coefficient of
variation, skewness, kurtosis, range, mean-median, primary
mode / secondary mode, average gradient, maximum quadrant co-

efficient of variation-minimum quadrant coefficient of varia-
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tion, and cumulative frequency values at 1%, 16%, 50%, 84%,
and 99% levels. The power spcctrum measurements selected for
both IR and visual data were values at wave numbers 1l-11 and
linear combinations of various wave numbers from 1-11. The
spatial distribution measurements have typically been used to
describe size, shape, and texture of cloud images. The power
spectrum measurements denote the amount of variance in an
observation due to clouds of various sizes. For example, given
2 grid size of 54x96 nmi., wave number 1 corresponds to a cloud
size of 27x48 nmi.

Both the Bayesian and maximum-likelihood classifiers were
designed on feature vectors obtained from 1050 observation ma-

txice

0

(half of the sample set) and were tested on both the
\
design set (cdependent data) and the remaining half of the sam-

ple set (independent data) not used for design. The con-

ditional probabilities p(i|X) where p(i|X) is the posteriori
probability that an observation belongs to group i given
observation vector X were calculated under the assumptions
that the feature vectors were normally distributed and that
the covariance matrix of ecach class could be approximated by
the pooled within-groups dispersion matrix Zp where

(Fy-1) I+ (Fy=1) Jokero# (B =1) ]y

P N-k

where Xi is the covariance matrix for group i, F. is the group
frequency for group i, N is the total number of obsecrvations,
and k is the total number of groups. A priori probabilities

P(i) for the Bayesian classificer were estimated from group-
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relative frequencies obtained from the entire sample set (in-
dependent and dependent data). For the maximum-likelihood
classifier all calculations were performed as for the Bayesian
classifier with the exception that equal a priori probabilities
were used. The decision rule was to classify and observation
into group 4 Af

PLLIEY = PGj|F) For all j # i

whexe
B i B )
) P(X|i)-P(i)
i=1
and
gl | 1 e ) }_ —;_7 e -l ‘7_7"
Pl = VoI expl= 5 (F-F;) "] 7 (X-1;)]
p 2
with

lzpl defined as the determinant of the pooled dispersion
matrix
k defined as the number of classification groups
Mi defincd as the mean vector for the ith classifica-
tion group
n defined as the number of features in feature vector
A,
With the threshold level for screening set at the 1%
significance level, thirty-two features (sixteen from each
channcl) for dual-channel data, sixteen for single-channel

IR data, and seventeen for single-channel visual data entered

into the discriminant functions g(f{-)i (where P(X]i) = exp[g(i)i])
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calculated for the maximum-likelihood and Bayes classifiers
using the stepwise multiple-discriminant analysis program
(BMDO7M) from the UCLA biomedical package. The feature which
was the best single discriminator for dual-channel data was
the IR value at the 1% cumulative-frequency level (at the

cold end of the cumulative-frequency curve) which represents
(for obscrvations containing clouds) the temperature of cloud
tops. For opagque clouds the thirty-two features chosen tend
to measure various characteristics of cloud tops; however, for
semi-transparcnt clouds such as cirriform the effects of
underlying visual and infrared radiation contaminate the
measurement of cloud-top characteristics. The minimum mean
temperature ranges were found in stratocumulus samples. The
maximum mean-temperature ranges were found in cumulonimbus and
cirrus observations with the coldest mean temperature found in
cumulonimbus observations. The mean temperature for cirrus
observations was relatively high as a consequence of radiation
transmitted from below the cloud tops. The maximum mean tem-
perature gradient was found in cirrus observations. The
feature which was the second best discriminator for dual-
channel data was the visual value at the 99% cumnulative fre-
quency level which represents high albedo. Mean relative
brightness was a maximum for cumulonimbus observations, a
minimum for clear observations, relatively low for cumulus
observations as a result of the nonhomogeneous nature of
cumuliform clouds, and considerably higher for stratocumulus

observations. Range in mean cloud brightness was maximum for
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cumulonimbus and minimum for observations containing only
cirriform clouds. The largest mean brightness gradients were
found in cumulonimbus and stratocumulus observations.
Measurcments of power-spectrum features revcaled that the
first five wave numbers accounted for 79% of the total
variance in cumuliform observations and 89% of the total
variance in cumulonimbus observations.

Difference in overall performance between the maximum-
likelihood classifier and the Bayes classifier did not vary
by more than 3% no matter whether dependent or independent
data was being considered or whether single-channel IR, single-
channel visual, or dual-channel data was being considecred or
whether a 5-group or 6-group cloud-type model was considered.
For dual-channel Bayes classification for the 6-~group model
the overall hit percentage was 76% for the dependent (design)
data and 63% for the independent data; for single-channel IR
Bayes classification for the 6-group model the overall hit
percentage was 60% for dependent data and 57% for independent
data; for single-channel visual Bayes classification for the
6-group model the overall hit percentage was 54% for dependent
data and 43% for independent data. In general, classification
results were better using the Bayes classifier on groups with
high a priori probabilities whercas the overall hit percentage
for groups with low a priori probabilities was better for the
maximum-likelihood clacssifier than for the Bayes classifier.
The major misclassifications occurred in distinguishing

cumulonimbus from cirrus with lower clouds, cirrus from cumu=-
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lonimbus, cirrus with lower clouds from cirrus, and cumulus

from clear skies. Relatively few cumulonimbus, cirrus, and

cirrus with lower clouds were misclassified as clear or into
one of the low-cloud groups. The pattern of errors obtained

might be expected as a result of the procedure for manual

classification of cloud types by the trained meteorologists.
If an observation contained cumulonimbus clouds and cirriform
clouds, it was labelled as cumulonimbus regardless of cloud
Also when cumulonimbus and

amount of each of the ‘two types.

cunulus clouds occurred in the same observation, it was
labelled as cumulonimbus, and when an observation contained a
small amount of cumulus cloud, it was labelled as cumulus
rather than clear skies.

The overall hit percentages for the Bayes classifier
applied to features extracted from single-channel, IR data,
single-channel visual data, and dual-channel data are given

in Table 2.3 below.

Six-Group Model Five-Group Model
Channel Dependent Data|Independent Data|Dependent Data Indggizdent
Visual 54% 43% i 55% 44%
IR 60% 57% 69% 63%
Visual/IR 76% 63% 81l% 69%

Table 2.3: Overall Hit Percentages of Bayes Classifier obtained by

Boot

ho73] s
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Thus it can be seen that features from the single-channel IR

data led to overall better classification results than could
be obtained using features only from single-channel visual
data. However clear skies can best be identified using
single-channcl visual data. Cumulus clcuds were best identi-
fied by single-channel IR data. For accurate identification
of cirrus clouds dual-channel data performed best.

Recommendations made by Booth for future research in

cloud classification techniques included:

(1) isolation of cloud elements in an observation by use
of sca-surface temperature measurements with sub-
sequent calculation of features only on regions of
an observation which contain clcud elements rather
than on the entire observation

(2) addition of a "no-decision" class in which those
observations whose a posteriori probability was not
greater than a given threshold could be placed

(3) additional training samples for the grouvps of strato-
cumulus and cirrus with lower clouds

(4) investigation of non-parametric methods of discrimi-

nant analysis,
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3.2. Cloud Seqmentation

Scene segmentation refers either to the partial or complete decomposi-
tion of image data into specific parts. The simplest example of seamentation
of meteorological satellite data is the separation of cloud from no cioud
points. Partitioning image data into cloud-type regions is another example
of segmentation. Partial scgmentation of an image may result in the extrac-
tion of cloud objects or patterns such as thunderstorm cells, low-Tevel
cunulus cloud line feeder bands, or arc-shaped mesohigh boundaries.

Basic segmentation techniques for decomposition or extraction of objects
include thresholding local properties, edge detection, template matching,
raster tracking, and region growing. Segmentation of meteorological satel-
lite data, either for cloud-type or cloud-pattern extraction or for observa-
tion of thunderstorm structure, has, for the most part, been the result of
application of thresholding or edge detection techniques. Matching tech-
nigues have been used to track the movement of cloud patterns. Raster track-
ing and its variations (such as omnidirectional tracking, etc.) are employed
in algorithms for line and/or curve detection. Region growing techniques
start with initial partitions of an image into homogeneous regions (for ex-
ample, regions of constant gray level) and then merce or split regions on the
basis of soime criterion for the "goodness" of a partition. Merging of par-
titions may continue until the gray level variance cxceceds a specific thres-
hold or may be based on riore complicated semantic criteria (see Yakimowsky
and Feldman [1973]).

The selection of appropriate cloud pattern thresholds is one of the most
important areas of investigation for extraction of severe storm features.
Parameters defining the vertical growth rate of a cell, spced-of-cell move-

ment, presence of merging cells, and presence of splitting cells depend criti-
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caliy on apprepriate temperature contouring of limited-scan infrared data.
According to Adler {1977, "the arca expansion inside particular isotherms is
a more accurate and morc scnsitive paremeter [of thunderstorm growth] in all
but the very early stages" than the minimum blackbody temperature. Adler
demonstrated that small arcas of colder temperatures within the anvil often
exhibited fluctuctions associated with convective activity that were not ob-
served in the expansion of the cirrus anvil. :

Automatic selection of gray-level thresholds is usually approached by
assuming that objects or patterns in an image can be characterized by modes
of normal distributions in gray-level histograms. For the mode method, the
threshold is selected at the bottom of a valley between two peaks. If the
valley is broad and the peaks are of unequal size, a Laplacian onerator can
be applicd to the victure te determine the gray-level value of points that lie
on or near object bovrders. Automatic threshold selectien of cloud pictures
(visible dota) usina @ Marguardt rearession procedure was investigated by
Yen [1972]. The precedure assumed that the gray-level distribution of the pic-
ture was a sum of normals. The success of the method was strongly dependent
on the number of normal density functicns (two or three) postulated. Cbject/
background thresholds were sclected at the intersections of the first and se-
cond normal density functions.

Fdqge detection operators have also been applied to meteorological satel-
lite data to extract clcuds from background. Smoothing or averaging the image
prior to applicaticn of edge detection operators can sometimes improve the
results. The Roberts digital gradient operator, which is defined for any
2 x 2 array of aray level values é g as max (|A-D|,|B-C|), often performs
as well as more expensive or sophisticated edge techniques on specific cloud

imaqes.  Edges can also be detected by high-pass spatial frequency filtering.
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The output of edge detection operators can be used in conjunction with border
tracking algorithms to outline an object or the output can be used to deter-
mine a gray-level threshold (isotherm) for contouring an oubject.

Segmentation of infrared data into cloud-type obiects by analysis of the
value of the average border edge strength of conncected components at each
possible temperature value is discussed in Parikh [1977b]. Three edge operators
were developed. Edge operators which differentiated between step edges and
ramp edges were more sensitive to isolation of uniform-textured cloud patterns
than operators which searched only for maximum difference between neighbors.
Results of automatic threshold selection based on this hybridization of thres-
hold and edoe-detection techniques could probably be improved by procedures
such as using a weighted average border-edge strength feature with less weight
at border points with fuzzy edges.

Techniques for autematic selecticn of temperature contours for analysis
of thunderstorm structure need to be developed. These techniques could be
used to procuce enhanced infrared imagery and to extract features which re-
late to severe thunderstorm activity. The selection of appropriate tempera-
ture contours could be based on analysis of features other than border-edge
strength. Features such as standard deviation of temperature (within the con-
toured arcas), uniformity of texture, mean-visibie brichtness, etc., should
also be examined.

Streaks, curves, and lines can be detected by examining local neighbor-
hoods (points or adjacent nonoverlapping averages of points) for line-like or
streak-1ike patterns. Results of streak detection operations can often be
significantly improved by repcating the operation more than once. A descrip-
tion of linear and nonlincar operators for streak and line detection can be

found in Rosenfeld and Kak [j976]. Similar operators can be designed to de-
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tect intersections or crossings of cloud patterns. A comparative study of
curve detection operators, line detection operators, and operators for detec-
tion of branching or crossings of curves needs to be conducted in order to
determine the most effective pattern recognition techniques for identifica-
tion of mesohigh boundary interactions and low-level cumulus cloud-line feeder

bands.

3.3. Cloud Geometry

Measures for describing geometrical properties or relationships of cloud
cells form an integral part of pattern recognition algorithms for detection
of severe storm features such as merging and for splitting cells, comma-shaped
patterns, oval-shaped leading edges of mesohighs, and vertical growth rate
of cells. Distance mecasures, measures of elongation, curvature measures and
area measures must be specified.

The concept of merging and/or splitting cells implies that a distance
measure between two cells exist. The distance between two cells can be a
function, for example, of the distance between the centroids of the cells,
the minimum distance between edge points, or the distance between the mini-
mum temperatures of the cells. If merging of two cells is defined in terms
of a zero distance between one or more edge points of the cells, then the
recognition of merging and/or splitting cells would be dependent on the selec-
tion of an appropriate isotherm to contour the cells.

Techniques for location of comma-shaped patterns (such as thinning, thick
curve following, etc.) could be developed or, alternatively, measures could
be defined to detect comma-like shapes. A possible definition of a comna
pattern might involve location of the medial axis of the pattern and examina-

tion of ratios of the widths to the length of the pattern.
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Oval-shaped boundaries of mesohighs could be defined in terms of arcs
with expected curvature values greater than a given threshold. The curva-
ture of a point on an arc is given by the difference between the left and
right slopes at the point. For an arc consisting of points pg,pys-...Pps
the left and right k-slopes at the point pj are the directions from p; to
pi-k and from p; to pj+k. resnectively.

The area of & digital object is defined as the number of points in the
object. In order to calculate che vertical growth rate of cells in terms of
a cloud expansion parameter, appropriate isctherms for cell definition must
be selected throughout the time period of observation. The selection of
the warmest temperature that is unambiguously part of the entity is discussed

in Adler [1976].

3.4. Cloud Tracking

The extrapolation of time-dependent features is a fundamental require-
ment for prediction of severe weather. Algorithms for automatic selection
and tracking of cloud objects have been developed primarily for wind velocity
estimation. These algorithms are reviewed in Sections 3.4.1 and 3.4.2. Auto-
mated algorithms for tracking thunderstorm cells and other similar time-
varying features remain to be developed. The time-varying nature of these fea-

tures distinguishes the prcblem of recognition of severe storm features from

most current problems in pattern recognition and imaae processing.
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3.4.)s Automatic Sclection Techniques for Cloud Targets

Automatic methods for wind velocity estimation which do
not rely upon the skill of a trained meteorologist to select
cloud targets to be tracked from frame to frame tend to imple-
ment a particular aspect of the manual cloud-target selection
procecdure.  Prior to manual selection of a particular indivi=
dual clement or feature to be traced, a metecorologist will
usually assess the synoptic situation and mentally note the
gencral cloud pattern flow over a large area. Automatic
cross-corrclation methods integrate cloud-pattern motion over
an area f(usually 32x32 or 64x64 picture points). The binary
matching technique developed by Bristor [72] emulated the
manual procedure of tracking cloud edges from frame to frame.
As a result of factors such as evaporation, not all edges are
conserved from frame to frame. In practice many meteorologists
would choose to follow brightness centers (not geometric cen-
ters) of cloud masses from frame to frame rather than follow
edges. The clustering algorithm of Endlich et al. [7]1] in

which cloud data were represented by brightness centers is an

analog to this procedure. Lo et al. [74] emphasized Fourier
transform filtering techniques for selecting individual cloud
elements of the same approximate size (preferably about 10 km)
as thosec normally used in manual selection techniques.

The operational model of the National Environmental Satel-
lite Service (NESS) described by Bradford et al, [72], computes
cloud-displaccment veccors from 64x64 cross-correlation ma-

trices resulting from backward cross-correlation of 32x32
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cloud-target arcas from the sccond frame with 64x64 areas from

the first frame. Each 32x32 array (and each 64x64 array) is
centered at a five-degree latitude-longitude intersection.

The choice of specific sizes for the two arrays was based on
the expected speed of the clouds. The use of a smaller array
for the target arca than for the search area was found to im-
prove the accuracy of cross-correlation wind velocity estimates
for those arcas in which clouds were moving in or out of the

boundaries or in which the boundary betwecen two different cloud

patterns came inside the 64x64 grid.

Bristor [72) developed a binary matching technique for
determining cloud-displacement vectors as early as 1967. A
cloud edge was defined by assigning to it a brightness isopleth.
The brightness range of the edge lay between the brighter
values within a cloud and the darker values of the background
arca. The isopleth may represent actual cloud edges or it may
represent a boundary where the cloud field becomes broken into
elements which cznnot be resolved by the satellite sensor sys-
tem. Each brightness image was reduced to a binary image with
cloud edges 'depicted by LY%s and darker oxh brighiter areas Y
0's. Illustrations of typical binary images can be found in
Lees» ct al, 71 1. The procedure for computing cloud displace-~

from these binary images will be presented in the next

et al, [ 71) reduced cloud patterns in successive
images to centers of brightness whose displace-

to frame agrecd qualitatively with cloud
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motion vectors calculated manually from time-lapse data of the
same sccene. An ISODATA (Iterative Self-Organizing Data

Analysis) algorithm was used to select the centers of bright-

l
?
*
|
i
]

ness.  ISODATA 1s a clustering procedure for obtaining maximum

lizelihood estimates for mcan values (centers) with splitting

and merging options for splitting clustecrs with too much within-
cluster variability and merging clusters with too little
between-cluster variability.

The program functioens as follows. Scaling of the three

variables -- x position, y position, and brightness value

=1

B —- is adjusted in accordance with weighting factors appro-
T 2 Al : : N eyl 2
priate for the thrce-dimensional distance {Ax”~ + Ay” + AB”}
yput points. Scales chosen for x and y values ranged
from 1 to 120 in increments of 4 since the original 120x120
array of satellite image points was defocused or averaged to
produce a 30x30 array. The scales chosen for the brightness
value ranged from 0 to 150 in steps of 10 with all points with

brightness values less than 60 discarded as background elements.

Then the mean value (X, §, B) and the root mean square distance

1
r = Klo2(x) + 0%(y) + 02(B)]°
where
2 2 2 B o I ; i
6 (%}, 6“(y), o (B) = variances of x, y, B,respectively,

K = sphere factor, choscn as 0.7 for this study to yield
10-15 centers per grid arca

were computed from the values of all input peints. The first
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brightness center was specified as the mean value (x, y, B).
Data points werc then compared in a sequential fashion to each
brightness center in order to determine if the distance from
the data point to the brightness center is less than the radius
r (defined above). If the distance is less than or equal to
the radius xr, the data point is assigned to: that cluster.
Otherwise, if the distance from every brightness center is
greater thaen the radius r, the point is chiosen as a new center.
After all points have been processed, a new set of brightness
centers (mean values of clusters) is computed for each group.

At this stacge,splitting and lumping options can be
appliecd. For splitting, the standard deviations within each
group for each of the variables x, y, B are computed and the
group having the largest value for any one dimension is ten-
tatively split through 1ts meanw value. New centers are compu-
ted, and if the distance between the two ncw centers is greater
than scme parameter CC, the two new clusters replace the
original one. For lumping if two cluster centers are closer
than “c' the two clusters arc merged into onc. It was found
experimentally that the splitting and merging operations did
not improve the accuracy of cloud motion vectors. The next
stage in the ISODATA program was to discard all centers that
had less than UN members, where ON was sct equal to three for
this application. The MOTION program matched brightness cen-
ters on two picturcs and computed distances between matched
pairs.

Lo ct al, [ 74] applied low-pass filtcrs, band-pass filters,
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and high-pass filters of various sizes to Fourier transforms
of successive satellite pictures in order to scparate cloud
components of different sizes and discard cloud elements which
are too largce to move passively with the wind. 1In a limited
region clouds of different sizes tend to occur at different
altitudes and conscquently represent different motion vectors.
Results from studies on simulated and recal-cloud data revealed
that the filtering technique did not significantly improve
wind velocity vectors for multi-layered, mixed-motion cloud i
regions. The filtering technique failed to categorize cloud
size by wavelength. High-frequency components contained in-
formation not only about small clouds but also about sharp
cdges of large clouds and similarly low-frequency components
containcd information not only about large cloud masses but
also about small c¢louds with low contrast and/or blurred edges.

Different filters or different approaches to the problem were

suggested for futurce research. In particular, thresholding

processes to scparate different c¢loud types, enhancement pro-
cedures such as two-tone cloud/background images to yicld
sharper cross-correlation peaks, and multispectral cloud-
classification methods were cxpected to improve wind velocity

estimates for multi-layered ficlds.
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3.4.2. Automatic Techniques for Tracking Cloud Targets

Automatic techniques for wind-velocity estimation such as
cross correlation, Euclidean norm, and phasc difference calcu-
late a cloud displacement vector from the brightness measure-
ments of a given sector. For these techniques, the entire sec-
tor is chosen as the cloud target to be tracked from frame to
frame. Cross-correclation methods can be modified by selection
of a subset of the given sector to be correlated with a sector
from the second image of the same size as the given sector.
Phasc differcnce and cross-correlation Fourier -methods can be
modified by filtering a Fourier transform prior to calculation
of a cloud-displacement vector. Binary matching techniques
and iterative fitting techniques compute a cloud displacement
vector frem cloud featurcs or cloud targets derived from the
brightness mecasurcments of the given sector, i.e., from edge
features and brightness centers, respectively.

For cross-correlation techniques a cloud displacement
vector, represernted by a displacement index of p picture
clements in the x-dircction (direction df ascending columns)
and a displacement index of g picture elements in the y direc-
tion (direction of ascending rows), is defined by the pair of
indices (p', g') for which the correclation coefficient
R(p', q') = max[R{p,q)] for all p, g where -P = p = P and
-0 s g s Q. The values of P and Q are dctermined from con-
sideration of reasonable values for cloud displacements. If
F and G are the meaas respectively of a sector f£(i,j), for

i=l,...,ni and j=l,...,nj from the first image and a sector
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g(i.3), for i=1,...,ni and j=1,...,nj from the second image,
then thc correlation cocfficient R(p,q) is defined as

R(p’q) = ggv_(&_ql

Of Og

where
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Speecd-of-cloud motion and angle-of-cloud motion is trivially
calculated as shown in the next section from the displacement
values (p':q'")-

Computation of a cross-correlation matrix of 25x25 lag

values (p,q) requircd approximately ten minutes on the IBM
System 360 Model 50, according to Leese et al, [71]. The com-
putation time can be greatly reduced by using fast Fourier
transform methods to compute the cross-covariance Cov(p,q).

Since the Fouriecr transform of the cross-covariance of two

| functions is the product of the complex conjugate of the Pourier

{ - transform of one of the functions with the Fourier transform

of the other function, the inverse Fourier transform of this

product will then yield the cross-covariance function. Time
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required to compute a 64x64 cross-correclation matrix on the
IBM 360/50 by the fast Fourier transform methods, search for
the maximum value, and print out the results was only thirty
scconds as compared to ten minutes for the direct method.

Fast Fouricr transforms compute sums of products of two
image matrices at different lag positions. These sums can be
used to calculate the dot product between two vectors (cross
corrclation) or the distance between two vectors (Euclidean
norm) . Advantages of the Euclidean norm technique mentioned
by Phillips and Smith [72] are its high degree of-flexibility
and readily interpretable results.

The GOES simulation model for wind velocity estimation at
the National Environmental Satellite Service uses a first-
guess displacement in combination with direct computation of
cross-correlation coecfficients to obtain a cloud-displacement
vector. The computer program, which is specifically adapted
to operate as efficiently as fast Fourier transform methods on
the CDC-6600, calculates an initial set of about 100 values of
cross-corrclation cocfficients in the neighborhood of the
first-guess location rather than the entire set of 40396 co-
efficients for a 64x64 matrix. If the displacement determined
from the initial set of 100 values matches the first-guess
field for the cloud-motion vector (which is derived from cloud-
height information cbupled with wind field profiles from the
National Metecorological Center), the cloud displacement is
accepted. The initial matching threshold was 45 degrees in

direction and 5 meters per second in speed. 1f the displace-
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ment vector does not match the first-guess field, the entire
matrix of cross-correlation coefficients is computed.

Although cross-correlation could be applied to the binary-
edge pictures constructed by Bristor's [72] binary matching
technique described in the previous section, processing time
requirements were about equal or slightly less for cloud dis-
placement calculation from match scores of the sector from the
first image with every possible (or rcasonable) sector from |
the second image. The origin of the cloud-displacement vector
was defined as the center of the first sector. The number of
positions containing l's in both the sector from the first
image and a sector from the second image formed the match
score. The terminus of the cloud-displacement vector was de-
fined as the center of the sector from the second image with

highest match score. The method was critically dependent

upon the equivalence of the brightness slice in the two sec-

tors. 1If it were possible to calibrate and normalize the data
for solar illumination, methods such as the binary matching

technique or ISODATA technique which depend upon thresholds to
determine cloud cdges or cloud masses could be used operation-

ally to compute cloud-displacement vectors, according to Leese

[64].

A program called MOTION, developed at Stanford Research
Institute and described by Endlich et al. [71]), matched ISODATA
{ brightness centers in two successive frames by iterating on a

fitting function F. F measured the distance
1

+ (AB)Z}2 between the displacement

» V 2 2
1 { (Ax~Bx, )" + (Ay=hyy)

83




vector for any two centers taken from successive frames and
an input displacement vector (Axk, Ayk, 0) with x displace-
menRt Axk, y displacement Ayk,.and brightness displacement of

zero. The initial values A%, and Ay, were specificd as the

median displacement in the x direction and the median displace-

ment in the y direction respectively taken over all pairs of
centers with the first center in picture 1 and the seccond
center in picture 2. The pair orf centers for which F was
smallest was then considered to be a matched pair. The match-
ing procedure continued for centers not previously matched by
scarching again for the smallest value of F. The matching
procedure terminated either when there were no more centers to
be matched or when the value of F exceeded a predetermined
threshold value chosen in this case to be represcntative of a
departure from .the input displacement vector of approximately
10nvsec—l. For the next iteration and for every succeeding
iteration of F values, the input displacement values K§; and
K?; were chosen as average values of x displacements and y
displacements for matched pairs only. In the cases investi-
gated by Endlich et al., [71], only threce iterations were neces-
sary for stable results in pair matching.

Approaches for selecting ISODATA brightness centers other

than applying ISODATA techniques to the two successive pictures

independently were analyzed. It was found that movement of
groups of clouds across boundaries in some cases prcesented
problems when using the independent analysis approach for

successive frames. It was then decided to usc the centers on
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the first picture as an initial guess for centers on the second
picturc; this worked well if the gencral displacement was not
teco large in comparison with the average distance between
brightness centers. The approach finally adopted used an
initial estimate of the general displacement to reposition the
brightness centers from picture 1 as initial quess centers for
picture 2. The initial estimate of the general displacement
was obtained as follows. Splitting commands of ISODATA applied
independently to the two pictures transformed 1 center into

2, then 4, then 8 centers for each picture. The MOTION program
matched as many as possible of the 8 centers from picture 1
with centers from picture 2. The average x and y displacements
of these matched pairs determined the initial estimate of the
gencral displaccment.

The ISODATA brightness centers, which represent cloud
data within an area having a certain radius, yielded averaged
motion vectors appropriate for use in synontic-scale numer-
ical foreccasting. Difficulties were encountered in applying
the ISODATA technique to large, dense,cloud bands such as the
intertropical convergence zone in which a variety of cloud
motions with few distinct discernible features could be seen.
The human eye tends in these cases to follow any individual,
small, recognizablc features which are conserved from frame
to frame rather than average the pattern into 10-15 brightness
ficlds. To improve the accuracy of cloud-displacement vectors

for multi-layered cloud regions, the addition of infrared

measurcments to form a four-dimensional input vector for the
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ISODATA program was suggested.
Lo and Parikh [73] compared a Fourier cross-correclation
method and a Fouricr phase diffcrcnce method for estimation

of cloud-displacement vectors on a varicty of simulated cloud

data., Simulatcd conditions included change of brightness,
change of size, cloud rotation, edge effects (cloud elements
moved out of the edge of one picture but similar clouds did
not come in at the onposite edge of the sccond picture), mixed
motion, and random cdinstrumental noise.

The phase difference method is based on the assumption
that the second picture gl(x,y) represents a lincar shift of p
units in the x direction and g units in the y direction from
the  firsh pictuse - filbo ) el

gix,y) = #{x-p,y=g) for all x,y
The Fouricr transform H{uw,v) of the cross-covariance function

<, yv) of two pictures £ (x,y) and g(x,;v) is given by

7

G (o, vk = Elav)

I

H(u,v)
where
G(u,v)* = complex conjugate of Fourier transform of the
second picture g(x,y)
F(u,v) = Pourier transform of the fiirst pacture £{x,y) ﬂ
From the definition of the Fouricr transform and the assump-

: tion that g(x,y) = f(x-p,y-q), it can be seen that

B x w o

G(u,v) = ” g(x,y) e

-0 - (O

-2ni(ux+vy)dxdy

oo oo

= JJ f(x-p,y-q)ec

-0 = L)

=21l (])M'\'}’)d}'dy

i
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I f f(xl,yl)c-zﬂil(X'+p)u+(y'+q)V] dxldyl

i

-0 =00

=2n1 (pu+gv)

i

F(u,v)e

If F(u,v) is expressed in terms of its amplitude and phase

angle as

Flu,v) = ||p(u,v)‘|c“i¢f(u,V) |
then

6 (u,vl = [P tu, | [eth2T BOaTI=9, (1, V1]
and

H{u,v) = G*(u,v) F(u,v) = ]|p(u,v)'!262ni(PU+qV)

The phasec angle gh(u,v) for H(u,v) is given by
ph(u,v) = 27 (putav)
The shifts p and g can be determined from successive u and v

values respectively from the relations

I

qh(u+l,v) - yh(u,v) 2Tp

qh(u,v+l) - vh(U:V) = 2nd

When the phasce difference method and the cross—-correlation
method wore applicd to simulated, mixed-motion data which vio-
lated the basic assumption of linear shift
(i.e., gix,y)] Z £(x~p,y=u) for any p.q) ., neither the phase
differcnce method nor the cross-correlation method could be
analyzed to obtain truc cstimates for both types of motion.

L Filtering in the frequency domain or thresholding in the spatial

domain werc suggested as possible approaches for future rescarch.
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3.4.3. Automatic Computation of Wind Velocity
The output from automatic techniques for tracking cloud
'

targets is a displacement vector (p',q'). Speed |c| and

direction 0 of cloud motion arec calculated as follows:

s
2 -y
=l = flp'=Ax)" + iqf-Ay)zlz
At
'I
0 = arctan B-A§
g sy

where

A%, Ay sampling intecrvals of the input picture matrix
in the cast-west and north-south directions,

respectively

‘t = tinme interval between the two pictures

The automated models of the National Environmental
Satellite Service (NESS) for estimation of low-level cloud
motion vectors have incorporated an automatic post-editor as
a major park of Lhe quality ceontrol unit. The post-editor of
the ACLOWIN=-XL1 model of NESS rejects a low-level cloud motion
veckor as wnvaliid 1 f 3k satisfies cithcr of the following
climatological critorias

(L) its magnitude is greater than 40 kts,

(2) it has a westerly component and is located between

20°N and 20°S.
The post-cditor of the GOLS simulation model of NESS considers
criteria such as displacement from .the first-guess field, hori-

zontal consistcency between necighboring cloud-motion vectors,
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and gradient around the primary maxima of the cross-correlation
ficld for determination of the validity of low-level cloud-

motion vectors.
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4. Conclusions and Reconmmendations

The purpose of this study was to assess the current status of pattern rec-
ognition techniques for severe storm features and to consider the potential
applicability of pattern recognition techniques to the automatic identifica-
tion and prediction of severe weather phenomena from satellite data. In the
previous scctions of this report, we have rcported in some detail on the na-
ture of severe storm features obtainable from visible and infrared satellite
data. We have also described the past developments and current status of
automatic techniques related to cloud classification and weather phenomena.
In this section, we summarize our conclusions and recommend directions which

appear fruitful for further investigation.

4.1. Conclusions

In the last decade automatic pattern recognition and image processing tech-
niques for analysis of meteorological satellite data have been directed pri-
marily toward solution of cloud classification and wind-velocity estimation
problems. The resolution and spectral characteristics of the meteorclogical
satellite data controlled the type of information which could be automatically
extracted from the data and the nature of apnlicable pattern-recognition tech-
niques. for coarse resolution data, point-by-point classification schemes were

developed. With the availability of high=resolution scanning radiometer data,

decision-tree models based on extraction of cloud-type features were constructed.

Critical thresholds for either point-by-point classification schemes or
decision-tree models were determined either from design samples, from theoreti-
cal considerations, or from conventional meteorological sources. Cloud-shape
and texture features could be determined from visible data only. Successful

cloud-type classification schemes required multispectral satellite data.
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Geosynchronous satellite data formed the orimary input to automatic wind-

velocity estimation programs. Cross-correlation techniques were applied to
two successive windows of either infrared or visible data to determine cloud-
displacement vectors. Techniques to extract wind estimates from displace-
ments confined to individual thermal slices are currently under investiga-
tion at NESS.

The automatic cloud-classification models and automatic wind-velocity esti-
mation models have been extensively tested only over oceanic regions. The non-
homogeneity of the land surface as a background coupled with an increase in the
influence of local meteorological phenomenon which result in non-advective cloud
motions, complicates the problem of automatic-cloud type and wind-velocity analysis
over land areas. The success of these systems on a global scale has yet to be tested.

Autematic severe weather identification ahd forecasting models place even
more stringent reguirements than automatic-cloud type or wind-velocity models
on the amount and nature of meteorological satellite data which must be cor- |
sidered by the system. In assessing the potential of pattern-recognition
techniques to identify severe storm features from satellite data, we observed
that severe-storm features could generally be grouped into three major cate-
gories:

1) wind-dependent features

2) enhanced-infrared features

3) visual features.
Specific severe weather features in each of the above categories are listed in
Table 2 . Wind-dependent features and enhanced-infrared features (with the
possible exception of steepest temperature gradient and top heights) require

time sequences of data to track the evolution of the feature.
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Relationships of specific severe-storm features to either wind data, en-

hanced infrared data, or visible data suggested by Table 1 represent one and
only one approach to récognition and quantitative measurement of severe-storm
features. Alternative relationships exist. Automatic techniques to identify
pendant-shaped cells, for example, could be formulated based on cell-shape
measurements rather than on veer of wind with height. Although overshooting
tops were categorized under enhanced infrared features, the resolution of in-
frared SMS data is too coarse to delineate individual overshooting tops. Out-
lines of individual tops are best observed in higher resolution visible imagery
for a Tow-sun angle. The major disadvantage of using visible data to track
overshooting tops is that a relatively expensive normalization procedure for
solar zenith angle would be necessary bcfore statistical relationships between
top brightness and severe-weather phenomena could be developed.

Qur general conclusien in examining the current status of severe-storm iden-
tification is that it is an area of individual, subjective experience which
exists in the form of verbal descriptions of various features. As a result,
there are differences 0f opinion among meteorologists concerning the nature
of the data necessary for identification of particular severe weather fea-
tures and the role of automatic processing in forecasting severe weather phe-
nomena. Although most of the responses to our severe weather questionnaire
indicated 2 need for automatic processing of high resolution, time sequences
of visible and infrared meteorological satellite data in an interactive en-
vironment, the blend of man-machine interaction envisioned within these sys-
tems varied.

On the one hand, it is said that automatic procedures cannot hope to com-

pete with computerized methods wher dealing with Tocal phenomena over small

93




regions. A meteorologist can cuickly assess the relevance of ground-based

reports, teletype reports, radar, and satellite features and bring to bear
his expertise on the limited area of concern. In this view, the role for au- ‘
tomated techniques is in dealing wilh more global situations where vast amount ;
of data are to be nandled in order to define the small percentage of areas on .
which a human should concentrate.

On the other hand, image processing of large amounts of satellite data on a

sequential computer is not economically feasible at the present time. The
general procedure to handle large amounts of data is to partition the data

into smaller regions (windows) and base decisions on local operations per-
formed on each window. This procedure fails to give satisfactory results
when contextual information from nearby windows is necessary for a decision
or when given features lie in two different windows. As a consequence, many
meteorologists prefer to use automatic techniques to exhaustively examine
small regions which they have selected in order to detect and measure subtle
differences and changes which are not easily measured by the human visual
system.

It would seem that a more careful study of the interaction between human

and machine processing of weather data will be facilitated by whatever attempts
are made in automating some of the severe storm featurcs in Table 2 . As a
first step, descriptions of severe weather features should be standardized

so as to allow automatic extraction whenever feasible. For wind-dependent

features in Table 2

s

algorithms to extract low-level and upper-level wind
vectors over occaric areas and to determine divergence and vorticity (Thomasell
[1977]) are being investigated at NESS. Our extensive search of the litera-

ture and our questioning or individuals working on different aspects of me-
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teorological data processing revealed no existing algorithms for automatic
extraction of enhanced infrared and visible imagery of severe storm features.
While many pattern recognition algorithms and image processing algorithms
exist for the various low-level operations that would be involved in extrac-
tion of these features (see Scction 3), a comparative study of the applica-
bility of relevant algorithms does not exist. To determine the best algo-
rithms relative to these features would require experimentation with real data.
As mentioned earlier, in the pattern recoonition and image processing litera-
ture aimost no attention has been paid to the extraction of features which
evolve with time. This time variation of enhanced infrared severe storm fea-
tures has not been attacked previously using patteirn recognition techniques,
and any demonstration of feasibiiity on these features would lend credence
to pattern recognition approaches for severe-storm pattern recognition. If
these features could be automatically observed and extracted, this would sub-
stantially aid in rapid decision making concerning severe storm activity and
testing correlations between measurements from satellite-derived severe-storm
features and from ground-based reports on severe weather phenomena. For
this reason, it is worthwhile to consider the development of automatic tech-

niques.
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4.2. Recommendations

It is recommended that an attempt be made to quantify current verbal de-
scriptions of severe-storm features in order to minimize ambiguity of defini-
tion and to facilitate (a) comparative studies of the correlation of the
various features to severe-weather phenomena and (b) the automatic extraction
of those features which correlate well with specific severe-weather phenomena.
Implementation of this recommendation will require close and extended inter-
action with meteorologists active in severe-storm identification and predic-
tion from satellite data.

The key to the eutomation of many of the potentially useful severe-storm
features lies in being able to detect and recognize patterns which evolve in
time. It is important to establish as early as possible the feasibility
of automatically recognizing such patterns. It appears that it may be pos-
sible to recognize some of these patterns using limited scan infrared data.
In the event that it should orove feasible to automatically extract time-
varying patterns as recommended above, it would be desirable to conduct a
comparative study of curve-detection operators and line-detection operators
for identification of mesohich-boundary interactions and low-level cumulus
cloud-Tine feeder bands. In line with the above, it is recommended that ini-
tially work be done on merging or splitting cells in infrared data enhanced
in a manner similar to that currently being used for human recognition. For
this investigation, data which contains well-defined events of the type to be
recognized will be neceded.

Algorithms for wind-velocity estimation and calculation of divergence and

vorticity fields over ocean areas are being develoned at NESS. There are cur-
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rently differences of opinion among meteorologists on the feasibility of using

automatic techniques to calculate cloud displacements which represent the am-
bient wind flow. The applicability of automatic algorithms to determine wind-
veclocity vectors from cloud displacements over land has not been determined.
In the event that they are applicable, these programs could be incorporated
into automatic methods to extract wind-dependent severe-storm features.
Decision trees (similar to that of Scofield's) which make use of a number of
features to determine specific severe-storin activity should be developed. In
developing these trees, particular attention should be given to features whose
extraction is likely to be successfully automated. Interactive programs for

the design of such decision trees should also be considered.
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APPENDIX

Severe Storm Questionnaire

QUESTIONNATRE

Please send responses to:

Professor Laveen Xanal
Laboratory for Pattern Analysis
Department of Computer Science
University of Maryland

College Park, Maryland 20742.

YOUR NAME:

ADDRESS & TEL. NO.

1. What are the cu*2yories of severe weather? (Some examples
are listed helow. What additional categories should be
listed?)

1. Severe windstorm

2. Heavy rainstorm

3. Hailstorm |
4 Tornado

5

3 6.
! 7/
8.
9.

2. Corresponding to the above catcgories, please list the im-

3 portant characteristics (features) of each of these categories
which you think may be obtainable from SMS satellite data; e.g.,
splitting cells, pendant shaped cells, overshooting thunder-
storm tops, right moving storms, low=-level cumulus feeder
bands, mesohigh boundary interactions, steepest temperature

{ gradient, speed of cell motion, vertical rate of cell growth,
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QUESTIONUAIRE
Pagc 2

2. (Continued)

pattern of upper level and lower level convergence and di-
vergence. If possible, please list the features for each
category in the order of their importance for characteriz-
ing each catcgory.

3. Which of the above characteristics do you feel are amenable

to computer extraction from visible and IR satel.ite data?
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QUESTIONNAIRE

Page 3

4.

J.

For cach of the characteristics listed under question 3, we
would like to know your opinion as to whether or not that
characteristic can be extracted from a single IR image. If
not, are visible imagery and/or a sequence of visible and/
or IR images required? If so, how many images and at what
intervals do you suggest?

1

Do vou know of algorithms which exist or are under develop-
ment for computer extraction of such features? TIf so, please
provide references to the algorithms and to the laboratories
or persons who can be contacted concerning them.
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QUESTIONNAIRE

Page 4

6.

7L

Are there algorithms which you feel should be implemented
either for preprocessing meteorological satellite data or
for analyzing specific severe storm areas? Do you feecl
that such arcas will have to be pin pointed by a meteorolo-
gist using a man-machinc interactive system?

Do you have specific suggestions on how computers can best
help in severe storm weather pattern recognition using sa-
tellite data?
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